Nuprl Lemma : assert-int-palindrome-test

[L:ℤ List]. uiff(↑int-palindrome-test(L);rev(L) L ∈ (ℤ List))


Proof




Definitions occuring in Statement :  int-palindrome-test: int-palindrome-test(L) reverse: rev(as) list: List assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B implies:  Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal-wf-base list_wf list_subtype_base int_subtype_base iff_weakening_uiff assert_wf palindrome-test_wf int-deq_wf assert-palindrome-test assert_witness int-palindrome-test-sq uiff_wf int-palindrome-test_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache independent_isectElimination addLevel productElimination independent_functionElimination cumulativity instantiate independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:\mBbbZ{}  List].  uiff(\muparrow{}int-palindrome-test(L);rev(L)  =  L)



Date html generated: 2018_05_21-PM-09_01_49
Last ObjectModification: 2017_07_26-PM-06_24_48

Theory : general


Home Index