Nuprl Lemma : assert-int-palindrome-test
∀[L:ℤ List]. uiff(↑int-palindrome-test(L);rev(L) = L ∈ (ℤ List))
Proof
Definitions occuring in Statement :
int-palindrome-test: int-palindrome-test(L)
,
reverse: rev(as)
,
list: T List
,
assert: ↑b
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
equal-wf-base,
list_wf,
list_subtype_base,
int_subtype_base,
iff_weakening_uiff,
assert_wf,
palindrome-test_wf,
int-deq_wf,
assert-palindrome-test,
assert_witness,
int-palindrome-test-sq,
uiff_wf,
int-palindrome-test_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
sqequalRule,
baseApply,
closedConclusion,
baseClosed,
hypothesisEquality,
applyEquality,
because_Cache,
independent_isectElimination,
addLevel,
productElimination,
independent_functionElimination,
cumulativity,
instantiate,
independent_pairEquality,
isect_memberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[L:\mBbbZ{} List]. uiff(\muparrow{}int-palindrome-test(L);rev(L) = L)
Date html generated:
2018_05_21-PM-09_01_49
Last ObjectModification:
2017_07_26-PM-06_24_48
Theory : general
Home
Index