Nuprl Lemma : assert-palindrome-test
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  uiff(↑palindrome-test(eq;L);rev(L) = L ∈ (T List))
Proof
Definitions occuring in Statement : 
palindrome-test: palindrome-test(eq;L), 
reverse: rev(as), 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
palindrome-test: palindrome-test(eq;L), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
has-value: (a)↓, 
bool: 𝔹, 
deq: EqDecider(T), 
so_apply: x[s1;s2;s3], 
all: ∀x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
top: Top, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
or: P ∨ Q, 
assert: ↑b, 
list-deq: list-deq(eq), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
null: null(as), 
true: True, 
sq_type: SQType(T), 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
decidable: Dec(P), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
unit: Unit, 
bfalse: ff, 
bnot: ¬bb, 
eqof: eqof(d)
Lemmas referenced : 
iff_weakening_uiff, 
assert_wf, 
taba_wf, 
bool_wf, 
btrue_wf, 
value-type-has-value, 
union-value-type, 
unit_wf2, 
band_wf, 
list_accum_wf, 
zip_wf, 
reverse_wf, 
assert_functionality_wrt_uiff, 
taba-property, 
assert_witness, 
equal_wf, 
list_wf, 
uiff_wf, 
palindrome-test_wf, 
deq_wf, 
length-reverse, 
length_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
length_of_nil_lemma, 
zip_nil_lemma, 
list_accum_nil_lemma, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
list-deq_wf, 
nil_wf, 
assert_of_band, 
iff_wf, 
equal-wf-base, 
product_subtype_list, 
spread_cons_lemma, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
length_of_cons_lemma, 
zip_cons_nil_lemma, 
cons_wf, 
non_neg_length, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
equal-wf-base-T, 
zip_cons_cons_lemma, 
list_accum_cons_lemma, 
add-is-int-iff, 
false_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
bfalse_wf, 
eqof_wf, 
iff_transitivity, 
safe-assert-deq, 
reduce_hd_cons_lemma, 
hd_wf, 
squash_wf, 
length_cons_ge_one, 
subtype_rel_list, 
top_wf, 
reduce_tl_cons_lemma, 
and_wf, 
tl_wf, 
deq_property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
addLevel, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
isect_memberFormation, 
independent_isectElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
callbyvalueReduce, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
productEquality, 
independent_functionElimination, 
universeEquality, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
voidElimination, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
intEquality, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
sqequalAxiom, 
unionElimination, 
baseClosed, 
instantiate, 
impliesFunctionality, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
dependent_set_memberEquality, 
imageElimination, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
equalityElimination, 
levelHypothesis, 
andLevelFunctionality, 
impliesLevelFunctionality, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].    uiff(\muparrow{}palindrome-test(eq;L);rev(L)  =  L)
Date html generated:
2018_05_21-PM-09_01_34
Last ObjectModification:
2017_07_26-PM-06_24_32
Theory : general
Home
Index