Nuprl Lemma : taba-property
∀[A,B:Type]. ∀[init:B]. ∀[F:A ⟶ A ⟶ B ⟶ B]. ∀[xs:A List].
(taba(init;x,x',a.F[x;x';a];xs)
= accumulate (with value a and list item p):
let x,x' = p
in F[x;x';a]
over list:
zip(rev(xs);xs)
with starting value:
init)
∈ B)
Proof
Definitions occuring in Statement :
taba: taba(init;x,x',a.F[x; x'; a];l)
,
zip: zip(as;bs)
,
reverse: rev(as)
,
list_accum: list_accum,
list: T List
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2;s3]
,
function: x:A ⟶ B[x]
,
spread: spread def,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
taba: taba(init;x,x',a.F[x; x'; a];l)
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
true: True
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2;s3]
,
so_apply: x[s1;s2]
,
pi1: fst(t)
,
subtype_rel: A ⊆r B
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
nat: ℕ
,
ge: i ≥ j
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
nth_tl: nth_tl(n;as)
,
le_int: i ≤z j
,
lt_int: i <z j
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
cons: [a / b]
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
colength: colength(L)
,
nil: []
,
it: ⋅
,
sq_type: SQType(T)
,
less_than: a < b
,
uiff: uiff(P;Q)
,
bool: 𝔹
,
unit: Unit
,
firstn: firstn(n;as)
,
assert: ↑b
,
int_iseg: {i...j}
,
cand: A c∧ B
,
listp: A List+
,
pi2: snd(t)
Lemmas referenced :
list_wf,
istype-universe,
decidable__le,
length_wf,
full-omega-unsat,
intformnot_wf,
intformle_wf,
itermVar_wf,
istype-int,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
list_accum_wf,
zip_wf,
reverse_wf,
firstn_all,
subtype_rel_list,
top_wf,
equal_wf,
squash_wf,
true_wf,
pi1_wf_top,
istype-top,
subtype_rel_product,
subtype_rel_self,
iff_weakening_equal,
nat_properties,
intformand_wf,
itermConstant_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
ge_wf,
istype-less_than,
list-cases,
length_of_nil_lemma,
list_ind_nil_lemma,
reverse_nil_lemma,
zip_nil_lemma,
list_accum_nil_lemma,
product_subtype_list,
colength-cons-not-zero,
colength_wf_list,
istype-le,
subtract-1-ge-0,
subtype_base_sq,
intformeq_wf,
int_formula_prop_eq_lemma,
set_subtype_base,
int_subtype_base,
spread_cons_lemma,
decidable__equal_int,
subtract_wf,
itermSubtract_wf,
itermAdd_wf,
int_term_value_subtract_lemma,
int_term_value_add_lemma,
le_wf,
length_of_cons_lemma,
list_ind_cons_lemma,
reverse-cons,
istype-nat,
add-is-int-iff,
false_wf,
le_int_wf,
uiff_transitivity,
equal-wf-T-base,
bool_wf,
assert_wf,
eqtt_to_assert,
assert_of_le_int,
non_neg_length,
lt_int_wf,
less_than_wf,
bnot_wf,
eqff_to_assert,
assert_functionality_wrt_uiff,
bnot_of_le_int,
assert_of_lt_int,
nth_tl_nil,
reduce_tl_nil_lemma,
reduce_tl_cons_lemma,
add-subtract-cancel,
list_decomp,
nth_tl_wf,
cons_wf,
general_length_nth_tl,
length_wf_nat,
decidable__lt,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
tl_nth_tl,
firstn_decomp,
select0,
select-nthtl,
istype-false,
firstn_wf,
nil_wf,
hd_wf,
listp_properties,
length_cons,
length_nth_tl,
zip-append,
length-reverse,
length_firstn,
le_weakening2,
zip_cons_cons_lemma,
list_accum_append,
list_accum_cons_lemma,
pi2_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
hypothesis,
universeIsType,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
inhabitedIsType,
functionIsType,
because_Cache,
instantiate,
universeEquality,
dependent_functionElimination,
unionElimination,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
voidElimination,
productEquality,
spreadEquality,
applyEquality,
productIsType,
imageElimination,
equalityTransitivity,
equalitySymmetry,
lambdaFormation_alt,
imageMemberEquality,
baseClosed,
productElimination,
setElimination,
rename,
intWeakElimination,
independent_pairFormation,
functionIsTypeImplies,
promote_hyp,
hypothesis_subsumption,
equalityIstype,
dependent_set_memberEquality_alt,
applyLambdaEquality,
baseApply,
closedConclusion,
intEquality,
sqequalBase,
cumulativity,
independent_pairEquality,
lambdaFormation,
pointwiseFunctionality,
addEquality,
equalityElimination,
hyp_replacement,
equalityIsType1,
voidEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[init:B]. \mforall{}[F:A {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[xs:A List].
(taba(init;x,x',a.F[x;x';a];xs)
= accumulate (with value a and list item p):
let x,x' = p
in F[x;x';a]
over list:
zip(rev(xs);xs)
with starting value:
init))
Date html generated:
2019_10_15-AM-11_35_24
Last ObjectModification:
2019_06_26-PM-03_42_33
Theory : general
Home
Index