Nuprl Lemma : taba-property
∀[A,B:Type]. ∀[init:B]. ∀[F:A ⟶ A ⟶ B ⟶ B]. ∀[xs:A List].
  (taba(init;x,x',a.F[x;x';a];xs)
  = accumulate (with value a and list item p):
     let x,x' = p 
     in F[x;x';a]
    over list:
      zip(rev(xs);xs)
    with starting value:
     init)
  ∈ B)
Proof
Definitions occuring in Statement : 
taba: taba(init;x,x',a.F[x; x'; a];l)
, 
zip: zip(as;bs)
, 
reverse: rev(as)
, 
list_accum: list_accum, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
taba: taba(init;x,x',a.F[x; x'; a];l)
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
nth_tl: nth_tl(n;as)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
bool: 𝔹
, 
unit: Unit
, 
firstn: firstn(n;as)
, 
assert: ↑b
, 
int_iseg: {i...j}
, 
cand: A c∧ B
, 
listp: A List+
, 
pi2: snd(t)
Lemmas referenced : 
list_wf, 
istype-universe, 
decidable__le, 
length_wf, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
list_accum_wf, 
zip_wf, 
reverse_wf, 
firstn_all, 
subtype_rel_list, 
top_wf, 
equal_wf, 
squash_wf, 
true_wf, 
pi1_wf_top, 
istype-top, 
subtype_rel_product, 
subtype_rel_self, 
iff_weakening_equal, 
nat_properties, 
intformand_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
ge_wf, 
istype-less_than, 
list-cases, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
reverse_nil_lemma, 
zip_nil_lemma, 
list_accum_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
le_wf, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
reverse-cons, 
istype-nat, 
add-is-int-iff, 
false_wf, 
le_int_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
eqtt_to_assert, 
assert_of_le_int, 
non_neg_length, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
nth_tl_nil, 
reduce_tl_nil_lemma, 
reduce_tl_cons_lemma, 
add-subtract-cancel, 
list_decomp, 
nth_tl_wf, 
cons_wf, 
general_length_nth_tl, 
length_wf_nat, 
decidable__lt, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
tl_nth_tl, 
firstn_decomp, 
select0, 
select-nthtl, 
istype-false, 
firstn_wf, 
nil_wf, 
hd_wf, 
listp_properties, 
length_cons, 
length_nth_tl, 
zip-append, 
length-reverse, 
length_firstn, 
le_weakening2, 
zip_cons_cons_lemma, 
list_accum_append, 
list_accum_cons_lemma, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
because_Cache, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
productEquality, 
spreadEquality, 
applyEquality, 
productIsType, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
imageMemberEquality, 
baseClosed, 
productElimination, 
setElimination, 
rename, 
intWeakElimination, 
independent_pairFormation, 
functionIsTypeImplies, 
promote_hyp, 
hypothesis_subsumption, 
equalityIstype, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
intEquality, 
sqequalBase, 
cumulativity, 
independent_pairEquality, 
lambdaFormation, 
pointwiseFunctionality, 
addEquality, 
equalityElimination, 
hyp_replacement, 
equalityIsType1, 
voidEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[init:B].  \mforall{}[F:A  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[xs:A  List].
    (taba(init;x,x',a.F[x;x';a];xs)
    =  accumulate  (with  value  a  and  list  item  p):
          let  x,x'  =  p 
          in  F[x;x';a]
        over  list:
            zip(rev(xs);xs)
        with  starting  value:
          init))
Date html generated:
2019_10_15-AM-11_35_24
Last ObjectModification:
2019_06_26-PM-03_42_33
Theory : general
Home
Index