Nuprl Lemma : tl_nth_tl

[n:ℕ]. ∀[L:Top List].  (tl(nth_tl(n;L)) nth_tl(n;tl(L)))


Proof




Definitions occuring in Statement :  nth_tl: nth_tl(n;as) tl: tl(l) list: List nat: uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top all: x:A. B[x] nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  btrue: tt subtract: m bfalse: ff bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) uimplies: supposing a ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} assert: b so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P)
Lemmas referenced :  nth_tl_nth_tl false_wf le_wf list_wf top_wf nat_wf equal_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermAdd_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot set_subtype_base int_subtype_base decidable__equal_int subtract_wf intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis hypothesisEquality sqequalAxiom isect_memberEquality because_Cache voidElimination voidEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination addEquality setElimination rename unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:Top  List].    (tl(nth\_tl(n;L))  \msim{}  nth\_tl(n;tl(L)))



Date html generated: 2017_04_14-AM-09_26_12
Last ObjectModification: 2017_02_27-PM-04_00_10

Theory : list_1


Home Index