Nuprl Lemma : nth_tl_nth_tl

[m,n:ℕ]. ∀[L:Top List].  (nth_tl(m;nth_tl(n;L)) nth_tl(m n;L))


Proof




Definitions occuring in Statement :  nth_tl: nth_tl(n;as) list: List nat: uall: [x:A]. B[x] top: Top add: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff btrue: tt decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) guard: {T}
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf top_wf nat_wf zero-add decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_wf lt_int_wf bnot_wf equal-wf-T-base itermAdd_wf int_term_value_add_lemma uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf tl_wf general_arith_equation1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache unionElimination baseApply closedConclusion baseClosed applyEquality addEquality equalityElimination productElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[m,n:\mBbbN{}].  \mforall{}[L:Top  List].    (nth\_tl(m;nth\_tl(n;L))  \msim{}  nth\_tl(m  +  n;L))



Date html generated: 2017_04_14-AM-09_26_08
Last ObjectModification: 2017_02_27-PM-04_00_18

Theory : list_1


Home Index