Nuprl Lemma : taba_wf

[A,B:Type]. ∀[init:B]. ∀[F:A ⟶ A ⟶ B ⟶ B].  ∀xs:A List. (taba(init;x,x',a.F[x;x';a];xs) ∈ B)


Proof




Definitions occuring in Statement :  taba: taba(init;x,x',a.F[x; x'; a];l) list: List uall: [x:A]. B[x] so_apply: x[s1;s2;s3] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] taba: taba(init;x,x',a.F[x; x'; a];l) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B pi2: snd(t) true: True uiff: uiff(P;Q)
Lemmas referenced :  list_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf length_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma list_ind_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma list_ind_cons_lemma zero-add pi2_wf squash_wf true_wf add-is-int-iff false_wf set_wf pi1_wf_top subtype_rel_product top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis extract_by_obid isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache functionEquality isect_memberEquality universeEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination applyEquality unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination independent_pairEquality productEquality imageMemberEquality pointwiseFunctionality baseApply closedConclusion comment functionExtensionality

Latex:
\mforall{}[A,B:Type].  \mforall{}[init:B].  \mforall{}[F:A  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].    \mforall{}xs:A  List.  (taba(init;x,x',a.F[x;x';a];xs)  \mmember{}  B)



Date html generated: 2018_05_21-PM-09_00_52
Last ObjectModification: 2017_07_26-PM-06_23_59

Theory : general


Home Index