Nuprl Lemma : csm-msg_wf

[V:Type]. ∀[sm:CSM(V)]. ∀[i,j:V]. ∀[a:Type(sm;i)]. ∀[b:csm-aux(sm;i)]. ∀[c:Cmd(sm) Msg(sm)].
  csm-msg(sm;i;j;a;b;c) ∈ Msg(sm) supposing ↑csm-sends(sm;i;j;a;b;c)


Proof




Definitions occuring in Statement :  csm-msg: csm-msg(sm;i;j;a;b;c) csm-sends: csm-sends(sm;i;j;a;b;c) csm-aux: csm-aux(sm;i) csm-type: Type(sm;i) csm-msgtype: Msg(sm) csm-cmd: Cmd(sm) csm: CSM(V) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a csm-msg: csm-msg(sm;i;j;a;b;c) spreadn: spread8 csm: CSM(V) csm-sends: csm-sends(sm;i;j;a;b;c) csm-cmd: Cmd(sm) pi1: fst(t) csm-msgtype: Msg(sm) pi2: snd(t) csm-aux: csm-aux(sm;i) csm-type: Type(sm;i) all: x:A. B[x] or: P ∨ Q band: p ∧b q ifthenelse: if then else fi  btrue: tt assert: b true: True bfalse: ff false: False prop:
Lemmas referenced :  do-apply_wf bool_cases_sqequal assert_wf csm-sends_wf csm-cmd_wf csm-msgtype_wf csm-aux_wf csm-type_wf csm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination unionEquality cumulativity hypothesisEquality because_Cache applyEquality dependent_functionElimination unionElimination hypothesis natural_numberEquality voidElimination dependent_set_memberEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[V:Type].  \mforall{}[sm:CSM(V)].  \mforall{}[i,j:V].  \mforall{}[a:Type(sm;i)].  \mforall{}[b:csm-aux(sm;i)].  \mforall{}[c:Cmd(sm)  +  Msg(sm)].
    csm-msg(sm;i;j;a;b;c)  \mmember{}  Msg(sm)  supposing  \muparrow{}csm-sends(sm;i;j;a;b;c)



Date html generated: 2016_05_15-PM-05_11_56
Last ObjectModification: 2015_12_27-PM-02_22_52

Theory : general


Home Index