Nuprl Lemma : csm-sends_wf

[V:Type]. ∀[sm:CSM(V)]. ∀[i,j:V]. ∀[a:Type(sm;i)]. ∀[b:csm-aux(sm;i)]. ∀[c:Cmd(sm) Msg(sm)].
  (csm-sends(sm;i;j;a;b;c) ∈ 𝔹)


Proof




Definitions occuring in Statement :  csm-sends: csm-sends(sm;i;j;a;b;c) csm-aux: csm-aux(sm;i) csm-type: Type(sm;i) csm-msgtype: Msg(sm) csm-cmd: Cmd(sm) csm: CSM(V) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-sends: csm-sends(sm;i;j;a;b;c) csm: CSM(V) spreadn: spread8 csm-cmd: Cmd(sm) pi1: fst(t) csm-msgtype: Msg(sm) pi2: snd(t) csm-aux: csm-aux(sm;i) csm-type: Type(sm;i) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] top: Top bfalse: ff
Lemmas referenced :  bool_wf eqtt_to_assert can-apply_wf assert_wf subtype_rel_dep_function top_wf subtype_rel_union equal_wf csm-cmd_wf csm-msgtype_wf csm-aux_wf csm-type_wf csm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin applyEquality functionExtensionality hypothesisEquality cumulativity hypothesis extract_by_obid lambdaFormation unionElimination equalityElimination isectElimination independent_isectElimination unionEquality because_Cache dependent_set_memberEquality lambdaEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality universeEquality

Latex:
\mforall{}[V:Type].  \mforall{}[sm:CSM(V)].  \mforall{}[i,j:V].  \mforall{}[a:Type(sm;i)].  \mforall{}[b:csm-aux(sm;i)].  \mforall{}[c:Cmd(sm)  +  Msg(sm)].
    (csm-sends(sm;i;j;a;b;c)  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-07_48_53
Last ObjectModification: 2017_07_26-PM-05_26_40

Theory : general


Home Index