Nuprl Lemma : do-apply-p-co-filter

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[f:∀x:T. Dec(P[x])]. ∀[x:T].
  do-apply(p-co-filter(f);x) x ∈ supposing ↑can-apply(p-co-filter(f);x)


Proof




Definitions occuring in Statement :  p-co-filter: p-co-filter(f) do-apply: do-apply(f;x) can-apply: can-apply(f;x) assert: b decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-co-filter: p-co-filter(f) do-apply: do-apply(f;x) can-apply: can-apply(f;x) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] top: Top implies:  Q decidable: Dec(P) or: P ∨ Q isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False btrue: tt
Lemmas referenced :  all_wf decidable_wf assert_wf can-apply_wf p-co-filter_wf subtype_rel_dep_function top_wf subtype_rel_union false_wf true_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality hypothesis because_Cache equalityTransitivity equalitySymmetry lemma_by_obid lambdaEquality applyEquality functionEquality cumulativity universeEquality unionEquality independent_isectElimination lambdaFormation voidElimination voidEquality unionElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:\mforall{}x:T.  Dec(P[x])].  \mforall{}[x:T].
    do-apply(p-co-filter(f);x)  =  x  supposing  \muparrow{}can-apply(p-co-filter(f);x)



Date html generated: 2016_05_15-PM-03_31_08
Last ObjectModification: 2015_12_27-PM-01_11_10

Theory : general


Home Index