Nuprl Lemma : p-co-filter_wf
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[f:∀x:T. Dec(P[x])].  (p-co-filter(f) ∈ T ⟶ (T + Top))
Proof
Definitions occuring in Statement : 
p-co-filter: p-co-filter(f), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
top: Top, 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
p-co-filter: p-co-filter(f), 
decidable: Dec(P), 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_apply: x[s], 
implies: P ⇒ Q, 
or: P ∨ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
top: Top
Lemmas referenced : 
or_wf, 
not_wf, 
subtype_rel_self, 
top_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
instantiate, 
universeEquality, 
unionElimination, 
inrEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inlEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
because_Cache, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:\mforall{}x:T.  Dec(P[x])].    (p-co-filter(f)  \mmember{}  T  {}\mrightarrow{}  (T  +  Top))
Date html generated:
2019_10_15-AM-11_07_35
Last ObjectModification:
2018_08_21-PM-01_59_06
Theory : general
Home
Index