Nuprl Lemma : p-co-filter_wf

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[f:∀x:T. Dec(P[x])].  (p-co-filter(f) ∈ T ⟶ (T Top))


Proof




Definitions occuring in Statement :  p-co-filter: p-co-filter(f) decidable: Dec(P) uall: [x:A]. B[x] top: Top prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  p-co-filter: p-co-filter(f) decidable: Dec(P) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] implies:  Q or: P ∨ Q prop: subtype_rel: A ⊆B top: Top
Lemmas referenced :  or_wf not_wf subtype_rel_self top_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality applyEquality hypothesisEquality thin extract_by_obid sqequalHypSubstitution isectElimination hypothesis lambdaFormation equalityTransitivity equalitySymmetry unionEquality instantiate universeEquality unionElimination inrEquality isect_memberEquality voidElimination voidEquality inlEquality dependent_functionElimination independent_functionElimination axiomEquality functionEquality because_Cache cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:\mforall{}x:T.  Dec(P[x])].    (p-co-filter(f)  \mmember{}  T  {}\mrightarrow{}  (T  +  Top))



Date html generated: 2019_10_15-AM-11_07_35
Last ObjectModification: 2018_08_21-PM-01_59_06

Theory : general


Home Index