Nuprl Lemma : frequency_wf

[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹]. ∀[f:ℕ ⟶ T]. ∀[x:T]. ∀[p:ℕ]. ∀[q:ℕ+].  (frequency(f;x) (p/q) ∈ ℙ)


Proof




Definitions occuring in Statement :  frequency: frequency(f;x) (p/q) nat_plus: + nat: bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  frequency: frequency(f;x) (p/q) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: cand: c∧ B nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q nat_plus: + guard: {T} so_apply: x[s]
Lemmas referenced :  all_wf nat_wf exists_wf less_than_wf ratio-dist_wf seq-count_wf int_seg_subtype_nat false_wf less_than_transitivity2 nat_plus_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality because_Cache productEquality setElimination rename hypothesisEquality cumulativity applyEquality natural_numberEquality addEquality independent_isectElimination independent_pairFormation lambdaFormation dependent_set_memberEquality productElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}[x:T].  \mforall{}[p:\mBbbN{}].  \mforall{}[q:\mBbbN{}\msupplus{}].    (frequency(f;x)  \msim{}  (p/q)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_44_07
Last ObjectModification: 2015_12_27-PM-02_39_13

Theory : general


Home Index