Nuprl Lemma : frequency_wf
∀[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹]. ∀[f:ℕ ⟶ T]. ∀[x:T]. ∀[p:ℕ]. ∀[q:ℕ+].  (frequency(f;x) ~ (p/q) ∈ ℙ)
Proof
Definitions occuring in Statement : 
frequency: frequency(f;x) ~ (p/q)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
frequency: frequency(f;x) ~ (p/q)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
guard: {T}
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
nat_wf, 
exists_wf, 
less_than_wf, 
ratio-dist_wf, 
seq-count_wf, 
int_seg_subtype_nat, 
false_wf, 
less_than_transitivity2, 
nat_plus_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
because_Cache, 
productEquality, 
setElimination, 
rename, 
hypothesisEquality, 
cumulativity, 
applyEquality, 
natural_numberEquality, 
addEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}[x:T].  \mforall{}[p:\mBbbN{}].  \mforall{}[q:\mBbbN{}\msupplus{}].    (frequency(f;x)  \msim{}  (p/q)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-04_44_07
Last ObjectModification:
2015_12_27-PM-02_39_13
Theory : general
Home
Index