Nuprl Lemma : fseg_cons_left

[T:Type]. ∀x:T. ∀[L1,L2:T List].  (fseg(T;[x L1];L2)  fseg(T;L1;L2))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  append_wf cons_wf nil_wf append_assoc equal_wf list_wf exists_wf list_ind_cons_lemma list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut lemma_by_obid isectElimination hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality lambdaEquality universeEquality dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}[L1,L2:T  List].    (fseg(T;[x  /  L1];L2)  {}\mRightarrow{}  fseg(T;L1;L2))



Date html generated: 2016_05_15-PM-03_34_31
Last ObjectModification: 2015_12_27-PM-01_13_34

Theory : general


Home Index