Nuprl Lemma : funinv-permutes-permutations-list

n:ℕpermutation({p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ;permutations-list(n);map(λf.inv(f);permutations-list(n)))


Proof




Definitions occuring in Statement :  permutations-list: permutations-list(n) permutation: permutation(T;L1;L2) funinv: inv(f) map: map(f;as) inject: Inj(A;B;f) int_seg: {i..j-} nat: all: x:A. B[x] set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  implies:  Q prop: nat: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a true: True subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T exists: x:A. B[x]
Lemmas referenced :  nat_wf int_seg_wf inject_wf funinv_wf2 permutation-of-permutations-list set_wf equal_wf iff_weakening_equal funinv-funinv sq_stable__inject true_wf squash_wf
Rules used in proof :  independent_functionElimination functionEquality setEquality applyEquality functionExtensionality because_Cache natural_numberEquality hypothesis dependent_set_memberEquality rename setElimination isectElimination lambdaEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalRule independent_pairFormation productElimination independent_isectElimination baseClosed imageMemberEquality universeEquality equalityTransitivity imageElimination equalitySymmetry hyp_replacement applyLambdaEquality dependent_pairFormation

Latex:
\mforall{}n:\mBbbN{}
    permutation(\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ;permutations-list(n);map(\mlambda{}f.inv(f);permutations-list(n)))



Date html generated: 2018_05_21-PM-08_22_41
Last ObjectModification: 2017_12_11-AM-11_13_30

Theory : general


Home Index