Nuprl Lemma : index-split_wf
∀[T:Type]. ∀[L:T List]. ∀[ids:ℕ List].  (index-split(L;ids) ∈ T List × (T List))
Proof
Definitions occuring in Statement : 
index-split: index-split(L;idxs)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
index-split: index-split(L;idxs)
, 
let: let, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
nat: ℕ
Lemmas referenced : 
firstn_wf, 
permute-to-front_wf, 
length_wf, 
filter_wf5, 
upto_wf, 
l_member_wf, 
subtype_rel_list, 
int_seg_wf, 
int-list-member_wf, 
nat_wf, 
nth_tl_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
independent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
intEquality, 
applyEquality, 
lambdaEquality, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[ids:\mBbbN{}  List].    (index-split(L;ids)  \mmember{}  T  List  \mtimes{}  (T  List))
Date html generated:
2016_05_15-PM-04_24_34
Last ObjectModification:
2015_12_27-PM-02_52_26
Theory : general
Home
Index