Nuprl Lemma : index-split_wf

[T:Type]. ∀[L:T List]. ∀[ids:ℕ List].  (index-split(L;ids) ∈ List × (T List))


Proof




Definitions occuring in Statement :  index-split: index-split(L;idxs) list: List nat: uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T index-split: index-split(L;idxs) let: let subtype_rel: A ⊆B all: x:A. B[x] uimplies: supposing a int_seg: {i..j-} prop: nat:
Lemmas referenced :  firstn_wf permute-to-front_wf length_wf filter_wf5 upto_wf l_member_wf subtype_rel_list int_seg_wf int-list-member_wf nat_wf nth_tl_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule independent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis intEquality applyEquality lambdaEquality lambdaFormation natural_numberEquality independent_isectElimination setElimination rename dependent_functionElimination setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[ids:\mBbbN{}  List].    (index-split(L;ids)  \mmember{}  T  List  \mtimes{}  (T  List))



Date html generated: 2016_05_15-PM-04_24_34
Last ObjectModification: 2015_12_27-PM-02_52_26

Theory : general


Home Index