Nuprl Lemma : permute-to-front_wf

[T:Type]. ∀[L:T List]. ∀[idxs:ℕ List].  (permute-to-front(L;idxs) ∈ List)


Proof




Definitions occuring in Statement :  permute-to-front: permute-to-front(L;idxs) list: List nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T permute-to-front: permute-to-front(L;idxs) all: x:A. B[x] prop: int_seg: {i..j-} subtype_rel: A ⊆B uimplies: supposing a nat: guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top squash: T so_lambda: λ2x.t[x] so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q less_than: a < b
Lemmas referenced :  list_wf int_formula_prop_less_lemma intformless_wf decidable__lt iff_weakening_equal filter-split-length length_wf_nat length_upto true_wf squash_wf less_than_wf length-append int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties bnot_wf nat_wf subtype_rel_list int-list-member_wf length_wf l_member_wf upto_wf filter_wf5 append_wf int_seg_wf select_wf permute_list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality natural_numberEquality because_Cache hypothesis lambdaFormation setElimination rename dependent_functionElimination applyEquality intEquality independent_isectElimination setEquality productElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality independent_functionElimination axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[idxs:\mBbbN{}  List].    (permute-to-front(L;idxs)  \mmember{}  T  List)



Date html generated: 2016_05_15-PM-04_23_24
Last ObjectModification: 2016_01_16-AM-11_12_20

Theory : general


Home Index