Nuprl Lemma : permute-to-front_wf
∀[T:Type]. ∀[L:T List]. ∀[idxs:ℕ List].  (permute-to-front(L;idxs) ∈ T List)
Proof
Definitions occuring in Statement : 
permute-to-front: permute-to-front(L;idxs)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
permute-to-front: permute-to-front(L;idxs)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
Lemmas referenced : 
list_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
iff_weakening_equal, 
filter-split-length, 
length_wf_nat, 
length_upto, 
true_wf, 
squash_wf, 
less_than_wf, 
length-append, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
bnot_wf, 
nat_wf, 
subtype_rel_list, 
int-list-member_wf, 
length_wf, 
l_member_wf, 
upto_wf, 
filter_wf5, 
append_wf, 
int_seg_wf, 
select_wf, 
permute_list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
natural_numberEquality, 
because_Cache, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
dependent_functionElimination, 
applyEquality, 
intEquality, 
independent_isectElimination, 
setEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[idxs:\mBbbN{}  List].    (permute-to-front(L;idxs)  \mmember{}  T  List)
Date html generated:
2016_05_15-PM-04_23_24
Last ObjectModification:
2016_01_16-AM-11_12_20
Theory : general
Home
Index