Nuprl Lemma : inv-rel-inject
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[finv:B ⟶ (A?)]. Inj(A;B;f) supposing inv-rel(A;B;f;finv)
Proof
Definitions occuring in Statement :
inv-rel: inv-rel(A;B;f;finv)
,
inject: Inj(A;B;f)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
unit: Unit
,
function: x:A ⟶ B[x]
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
inject: Inj(A;B;f)
,
inv-rel: inv-rel(A;B;f;finv)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
outl: outl(x)
,
isl: isl(x)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
Lemmas referenced :
equal_wf,
all_wf,
unit_wf2,
and_wf,
outl_wf,
assert_wf,
isl_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
hypothesis,
extract_by_obid,
isectElimination,
hypothesisEquality,
applyEquality,
lambdaEquality,
dependent_functionElimination,
axiomEquality,
because_Cache,
productEquality,
functionEquality,
unionEquality,
inlEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality,
hyp_replacement,
applyLambdaEquality,
dependent_set_memberEquality,
independent_pairFormation,
setElimination,
rename,
independent_isectElimination,
promote_hyp,
natural_numberEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[f:A {}\mrightarrow{} B]. \mforall{}[finv:B {}\mrightarrow{} (A?)]. Inj(A;B;f) supposing inv-rel(A;B;f;finv)
Date html generated:
2018_05_21-PM-06_50_17
Last ObjectModification:
2018_05_19-PM-04_41_18
Theory : general
Home
Index