Nuprl Lemma : iseg_product-property
∀i,j:ℤ. ∀k:ℕ.  (k | iseg_product(i;j)) supposing ((k ≤ j) and (i ≤ k))
Proof
Definitions occuring in Statement : 
iseg_product: iseg_product(i;j)
, 
divides: b | a
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
iseg_product: iseg_product(i;j)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
nat_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
subtract_wf, 
divides-combinations, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}i,j:\mBbbZ{}.  \mforall{}k:\mBbbN{}.    (k  |  iseg\_product(i;j))  supposing  ((k  \mleq{}  j)  and  (i  \mleq{}  k))
Date html generated:
2016_05_15-PM-06_01_27
Last ObjectModification:
2016_01_16-PM-00_40_23
Theory : general
Home
Index