Nuprl Lemma : iseg_product-property

i,j:ℤ. ∀k:ℕ.  (k iseg_product(i;j)) supposing ((k ≤ j) and (i ≤ k))


Proof




Definitions occuring in Statement :  iseg_product: iseg_product(i;j) divides: a nat: uimplies: supposing a le: A ≤ B all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False uall: [x:A]. B[x] nat: prop: iseg_product: iseg_product(i;j) ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  nat_wf int_formula_prop_less_lemma intformless_wf decidable__lt le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties subtract_wf divides-combinations less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination lemma_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality addEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll

Latex:
\mforall{}i,j:\mBbbZ{}.  \mforall{}k:\mBbbN{}.    (k  |  iseg\_product(i;j))  supposing  ((k  \mleq{}  j)  and  (i  \mleq{}  k))



Date html generated: 2016_05_15-PM-06_01_27
Last ObjectModification: 2016_01_16-PM-00_40_23

Theory : general


Home Index