Nuprl Lemma : markov-streamless-product

(∀P:ℕ ⟶ ℙ((∀m:ℕ((P m) ∨ (P m))))  (∀m:ℕ(P m))))  (∃m:ℕ(P m))))
 (∀A,B:Type.  (streamless(A)  streamless(B)  streamless(A × B)))


Proof




Definitions occuring in Statement :  streamless: streamless(T) nat: prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: or: P ∨ Q subtype_rel: A ⊆B not: ¬A false: False exists: x:A. B[x] nat:
Lemmas referenced :  markov-streamless-iff decidable__equal_product istype-universe streamless_wf nat_wf subtype_rel_self istype-void equipollent_wf int_seg_wf mul_bounds_1a le_wf equipollent_same equipollent_functionality_wrt_equipollent product_functionality_wrt_equipollent equipollent_inversion equipollent-multiply
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution independent_functionElimination thin hypothesis dependent_functionElimination hypothesisEquality productElimination productEquality isectElimination sqequalRule lambdaEquality_alt inhabitedIsType productIsType independent_pairFormation universeIsType universeEquality functionIsType unionIsType applyEquality instantiate because_Cache voidElimination natural_numberEquality setElimination rename dependent_pairFormation_alt dependent_set_memberEquality_alt multiplyEquality

Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}m:\mBbbN{}.  ((P  m)  \mvee{}  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mneg{}(\mforall{}m:\mBbbN{}.  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (P  m))))
{}\mRightarrow{}  (\mforall{}A,B:Type.    (streamless(A)  {}\mRightarrow{}  streamless(B)  {}\mRightarrow{}  streamless(A  \mtimes{}  B)))



Date html generated: 2019_10_15-AM-11_35_42
Last ObjectModification: 2018_10_09-AM-10_56_39

Theory : general


Home Index