Nuprl Lemma : markov-streamless-iff

(∀P:ℕ ⟶ ℙ((∀m:ℕ((P m) ∨ (P m))))  (∀m:ℕ(P m))))  (∃m:ℕ(P m))))
 (∀T:Type. (streamless(T) ⇐⇒ (∀x,y:T.  Dec(x y ∈ T)) ∧ (¬¬(∃n:ℕ~ ℕn))))


Proof




Definitions occuring in Statement :  streamless: streamless(T) equipollent: B int_seg: {i..j-} nat: decidable: Dec(P) prop: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q not: ¬A false: False nat: exists: x:A. B[x] rev_implies:  Q cand: c∧ B guard: {T}
Lemmas referenced :  all_wf nat_wf or_wf not_wf exists_wf list_wf no_repeats_wf equal_wf length_wf l_member_wf decidable_wf equipollent_wf int_seg_wf streamless_wf iff_wf markov-streamless-iff-not-not-enum equipollent-iff-list deq-exists length_wf_nat remove-repeats_wf remove-repeats-no_repeats remove-repeats_property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation universeEquality cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality sqequalRule functionExtensionality because_Cache independent_pairFormation productElimination dependent_functionElimination independent_functionElimination voidElimination productEquality intEquality setElimination rename dependent_pairFormation natural_numberEquality addLevel impliesFunctionality existsFunctionality existsLevelFunctionality impliesLevelFunctionality andLevelFunctionality

Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}m:\mBbbN{}.  ((P  m)  \mvee{}  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mneg{}(\mforall{}m:\mBbbN{}.  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (P  m))))
{}\mRightarrow{}  (\mforall{}T:Type.  (streamless(T)  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))  \mwedge{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  T  \msim{}  \mBbbN{}n))))



Date html generated: 2018_05_21-PM-09_03_16
Last ObjectModification: 2017_07_26-PM-06_26_06

Theory : general


Home Index