Nuprl Lemma : markov-streamless-iff-not-not-enum
(∀P:ℕ ⟶ ℙ. ((∀m:ℕ. ((P m) ∨ (¬(P m)))) 
⇒ (¬(∀m:ℕ. (¬(P m)))) 
⇒ (∃m:ℕ. (P m))))
⇒ (∀T:Type. (streamless(T) 
⇐⇒ (∀x,y:T.  Dec(x = y ∈ T)) ∧ (¬¬(∃L:T List. ∀x:T. (x ∈ L)))))
Proof
Definitions occuring in Statement : 
streamless: streamless(T)
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
decidable: Dec(P)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
streamless: streamless(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
l_member: (x ∈ l)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
pi1: fst(t)
, 
inject: Inj(A;B;f)
, 
true: True
, 
uiff: uiff(P;Q)
Lemmas referenced : 
streamless-dec-equal, 
streamless-implies-not-not-enum, 
not_wf, 
exists_wf, 
list_wf, 
all_wf, 
l_member_wf, 
streamless_wf, 
decidable_wf, 
equal_wf, 
nat_wf, 
or_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
decidable__exists_int_seg, 
decidable__cand, 
decidable__not, 
decidable__equal_nat, 
lelt_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
non_neg_length, 
le_wf, 
length_wf_nat, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
less_than_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__equal_int, 
pigeon-hole, 
add_nat_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_rel_dep_function, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
productElimination, 
productEquality, 
universeEquality, 
instantiate, 
functionEquality, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
isect_memberEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
dependent_pairFormation, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
imageElimination, 
promote_hyp, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
addEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}m:\mBbbN{}.  ((P  m)  \mvee{}  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mneg{}(\mforall{}m:\mBbbN{}.  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (P  m))))
{}\mRightarrow{}  (\mforall{}T:Type.  (streamless(T)  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))  \mwedge{}  (\mneg{}\mneg{}(\mexists{}L:T  List.  \mforall{}x:T.  (x  \mmember{}  L)))))
Date html generated:
2018_05_21-PM-09_03_01
Last ObjectModification:
2017_07_26-PM-06_25_50
Theory : general
Home
Index