Nuprl Lemma : markov-streamless-iff-not-not-enum

(∀P:ℕ ⟶ ℙ((∀m:ℕ((P m) ∨ (P m))))  (∀m:ℕ(P m))))  (∃m:ℕ(P m))))
 (∀T:Type. (streamless(T) ⇐⇒ (∀x,y:T.  Dec(x y ∈ T)) ∧ (¬¬(∃L:T List. ∀x:T. (x ∈ L)))))


Proof




Definitions occuring in Statement :  streamless: streamless(T) l_member: (x ∈ l) list: List nat: decidable: Dec(P) prop: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T not: ¬A false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B streamless: streamless(T) nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) cand: c∧ B decidable: Dec(P) or: P ∨ Q guard: {T} l_member: (x ∈ l) int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T pi1: fst(t) inject: Inj(A;B;f) true: True uiff: uiff(P;Q)
Lemmas referenced :  streamless-dec-equal streamless-implies-not-not-enum not_wf exists_wf list_wf all_wf l_member_wf streamless_wf decidable_wf equal_wf nat_wf or_wf int_seg_wf int_seg_subtype_nat false_wf decidable__exists_int_seg decidable__cand decidable__not decidable__equal_nat lelt_wf length_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length le_wf length_wf_nat squash_wf true_wf iff_weakening_equal less_than_wf intformeq_wf int_formula_prop_eq_lemma decidable__equal_int pigeon-hole add_nat_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma subtype_rel_dep_function subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_functionElimination hypothesis dependent_functionElimination hypothesisEquality voidElimination cumulativity sqequalRule lambdaEquality productElimination productEquality universeEquality instantiate functionEquality applyEquality functionExtensionality natural_numberEquality setElimination rename independent_isectElimination isect_memberEquality unionElimination inlFormation inrFormation dependent_pairFormation dependent_set_memberEquality equalityTransitivity equalitySymmetry int_eqEquality intEquality voidEquality computeAll imageElimination promote_hyp applyLambdaEquality imageMemberEquality baseClosed addEquality pointwiseFunctionality baseApply closedConclusion

Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}m:\mBbbN{}.  ((P  m)  \mvee{}  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mneg{}(\mforall{}m:\mBbbN{}.  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (P  m))))
{}\mRightarrow{}  (\mforall{}T:Type.  (streamless(T)  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))  \mwedge{}  (\mneg{}\mneg{}(\mexists{}L:T  List.  \mforall{}x:T.  (x  \mmember{}  L)))))



Date html generated: 2018_05_21-PM-09_03_01
Last ObjectModification: 2017_07_26-PM-06_25_50

Theory : general


Home Index