Nuprl Lemma : streamless-dec-equal

[T:Type]. (streamless(T)  (∀x,y:T.  Dec(x y ∈ T)))


Proof




Definitions occuring in Statement :  streamless: streamless(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: streamless: streamless(T) exists: x:A. B[x] and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) nat: subtype_rel: A ⊆B or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q not: ¬A rev_implies:  Q bfalse: ff ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top decidable: Dec(P) bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b
Lemmas referenced :  streamless_wf nat_wf exists_wf not_wf equal_wf all_wf ifthenelse_wf eq_int_wf assert_wf bnot_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot int_subtype_base nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf bool_cases_sqequal assert-bnot neg_assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesis universeEquality promote_hyp productElimination dependent_functionElimination lambdaEquality sqequalRule functionEquality applyEquality functionExtensionality productEquality because_Cache rename dependent_pairFormation equalityTransitivity equalitySymmetry independent_functionElimination setElimination intEquality unionElimination instantiate independent_isectElimination independent_pairFormation impliesFunctionality natural_numberEquality int_eqEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality computeAll inlFormation inrFormation equalityElimination

Latex:
\mforall{}[T:Type].  (streamless(T)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y)))



Date html generated: 2018_05_21-PM-09_02_21
Last ObjectModification: 2017_07_26-PM-06_25_21

Theory : general


Home Index