Nuprl Lemma : streamless-implies-not-not-enum

[T:Type]. (streamless(T)  (¬¬(∃L:T List. ∀x:T. (x ∈ L))))


Proof




Definitions occuring in Statement :  streamless: streamless(T) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q guard: {T} prop: squash: T top: Top exists: x:A. B[x] no_repeats: no_repeats(T;l) uimplies: supposing a nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) and: P ∧ Q subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b le: A ≤ B less_than: a < b true: True iff: ⇐⇒ Q select: L[n] cons: [a b] l_member: (x ∈ l) cand: c∧ B streamless: streamless(T) less_than': less_than'(a;b) rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  streamless-dec-equal basic-bar-induction not_wf no_repeats_wf list_wf or_wf exists_wf all_wf l_member_wf decidable__not decidable__no_repeats append_wf cons_wf nil_wf nat_wf no_repeats_nil streamless_wf decidable__l_member equal_wf select_wf length-append length_of_cons_lemma length_of_nil_lemma nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf length_wf subtype_rel_list top_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot length_nil non_neg_length length_cons length_append decidable__lt intformless_wf intformeq_wf itermAdd_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma int_term_value_add_lemma decidable__equal_int le_wf equal-wf-base int_subtype_base zero-add subtract_wf add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf length-singleton squash_wf true_wf iff_weakening_equal select-append imax_wf add_nat_wf imax_nat map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat upto_wf map-length length_upto ifthenelse_wf le_int_wf assert_of_le_int add_functionality_wrt_eq imax_unfold lelt_wf select-map select-upto
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality independent_functionElimination hypothesis because_Cache sqequalRule lambdaEquality cumulativity dependent_functionElimination unionElimination inrFormation voidElimination inlFormation imageElimination imageMemberEquality baseClosed functionEquality isect_memberEquality voidEquality universeEquality setElimination rename independent_isectElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry applyEquality equalityElimination productElimination promote_hyp instantiate dependent_set_memberEquality pointwiseFunctionality baseApply closedConclusion productEquality addEquality applyLambdaEquality

Latex:
\mforall{}[T:Type].  (streamless(T)  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}L:T  List.  \mforall{}x:T.  (x  \mmember{}  L))))



Date html generated: 2018_05_21-PM-09_02_43
Last ObjectModification: 2017_07_26-PM-06_25_36

Theory : general


Home Index