Nuprl Lemma : decidable__no_repeats

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀L:T List. Dec(no_repeats(T;L))))


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] no_repeats: no_repeats(T;l) member: t ∈ T so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T so_apply: x[s] nat: ge: i ≥ 
Lemmas referenced :  decidable__all_int_seg length_wf all_wf int_seg_wf not_wf equal_wf nat_wf int_seg_subtype_nat false_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma decidable__implies decidable__not decidable__equal_nat list_wf decidable_wf uall_wf isect_wf less_than_wf nat_properties lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality isectElimination cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality applyEquality independent_isectElimination independent_pairFormation because_Cache setElimination rename productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination independent_functionElimination universeEquality inlFormation inrFormation equalityTransitivity equalitySymmetry dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}L:T  List.  Dec(no\_repeats(T;L))))



Date html generated: 2018_05_21-PM-06_40_13
Last ObjectModification: 2017_07_26-PM-04_53_41

Theory : general


Home Index