Nuprl Lemma : member-assert

[b:𝔹]. Ax ∈ ↑supposing ↑b


Proof




Definitions occuring in Statement :  assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a assert: b ifthenelse: if then else fi  true: True prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False
Lemmas referenced :  bool_wf eqtt_to_assert true_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot false_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination sqequalRule axiomEquality natural_numberEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination isect_memberEquality

Latex:
\mforall{}[b:\mBbbB{}].  Ax  \mmember{}  \muparrow{}b  supposing  \muparrow{}b



Date html generated: 2017_10_01-AM-09_15_29
Last ObjectModification: 2017_07_26-PM-04_50_13

Theory : general


Home Index