Nuprl Lemma : mu'_wf

[A:Type]. ∀[P:A ⟶ ℕ ⟶ 𝔹]. ∀[d:∀x:A. Dec(∃n:ℕ(↑(P n)))].  (mu'(P) ∈ A ⟶ (ℕ Top))


Proof




Definitions occuring in Statement :  mu': mu'(P) nat: assert: b bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mu': mu'(P) prop: so_lambda: λ2x.t[x] so_apply: x[s] p-mu-decider subtype_rel: A ⊆B all: x:A. B[x] implies:  Q exists: x:A. B[x] top: Top
Lemmas referenced :  all_wf decidable_wf exists_wf nat_wf assert_wf bool_wf p-mu-decider top_wf p-mu_wf pi1_wf_top equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality lambdaEquality applyEquality isect_memberEquality because_Cache functionEquality universeEquality instantiate isectEquality cumulativity unionEquality functionExtensionality lambdaFormation productElimination independent_pairEquality voidElimination voidEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[d:\mforall{}x:A.  Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  x  n)))].    (mu'(P)  \mmember{}  A  {}\mrightarrow{}  (\mBbbN{}  +  Top))



Date html generated: 2018_05_21-PM-06_29_44
Last ObjectModification: 2018_05_19-PM-04_40_21

Theory : general


Home Index