Nuprl Lemma : mu'_wf
∀[A:Type]. ∀[P:A ⟶ ℕ ⟶ 𝔹]. ∀[d:∀x:A. Dec(∃n:ℕ. (↑(P x n)))].  (mu'(P) ∈ A ⟶ (ℕ + Top))
Proof
Definitions occuring in Statement : 
mu': mu'(P)
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mu': mu'(P)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
p-mu-decider, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
all_wf, 
decidable_wf, 
exists_wf, 
nat_wf, 
assert_wf, 
bool_wf, 
p-mu-decider, 
top_wf, 
p-mu_wf, 
pi1_wf_top, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
instantiate, 
isectEquality, 
cumulativity, 
unionEquality, 
functionExtensionality, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[d:\mforall{}x:A.  Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  x  n)))].    (mu'(P)  \mmember{}  A  {}\mrightarrow{}  (\mBbbN{}  +  Top))
Date html generated:
2018_05_21-PM-06_29_44
Last ObjectModification:
2018_05_19-PM-04_40_21
Theory : general
Home
Index