Nuprl Lemma : no_repeats-merge
∀[T:Type]. ∀[bs,as:T List].  (no_repeats(T;merge(as;bs))) supposing (sorted(as) and no_repeats(T;as)) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
merge: merge(as;bs)
, 
no_repeats: no_repeats(T;l)
, 
sorted: sorted(L)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
merge: merge(as;bs)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
guard: {T}
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
no_repeats_wf, 
sorted_wf, 
merge_wf, 
reduce_nil_lemma, 
no_repeats_witness, 
reduce_cons_lemma, 
s-insert-no-repeats, 
sorted-merge, 
s-insert_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
rename, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[bs,as:T  List].    (no\_repeats(T;merge(as;bs)))  supposing  (sorted(as)  and  no\_repeats(T;as)) 
    supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2016_05_15-PM-03_52_45
Last ObjectModification:
2015_12_27-PM-01_23_53
Theory : general
Home
Index