Nuprl Lemma : s-insert-no-repeats
∀[T:Type]. ∀[x:T]. ∀[L:T List]. (no_repeats(T;s-insert(x;L))) supposing (no_repeats(T;L) and sorted(L)) supposing T ⊆r \000Cℤ
Proof
Definitions occuring in Statement :
s-insert: s-insert(x;l)
,
no_repeats: no_repeats(T;l)
,
sorted: sorted(L)
,
list: T List
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
s-insert: s-insert(x;l)
,
no_repeats: no_repeats(T;l)
,
sorted: sorted(L)
,
select: L[n]
,
nil: []
,
it: ⋅
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
so_apply: x[s1;s2]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
not: ¬A
,
false: False
,
nat: ℕ
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
guard: {T}
,
lelt: i ≤ j < k
,
uiff: uiff(P;Q)
,
cand: A c∧ B
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
label: ...$L... t
Lemmas referenced :
list_induction,
isect_wf,
sorted_wf,
no_repeats_wf,
s-insert_wf,
list_wf,
no_repeats_witness,
subtype_rel_wf,
length_of_nil_lemma,
stuck-spread,
base_wf,
list_ind_nil_lemma,
length_of_cons_lemma,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformeq_wf,
itermVar_wf,
intformless_wf,
itermConstant_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
decidable__equal_int,
int_formula_prop_wf,
le_wf,
equal-wf-base,
int_subtype_base,
equal_wf,
select_wf,
cons_wf,
nil_wf,
not_wf,
nat_wf,
less_than_wf,
uall_wf,
all_wf,
int_seg_wf,
int_seg_properties,
list_ind_cons_lemma,
ifthenelse_wf,
eq_int_wf,
lt_int_wf,
bool_wf,
equal-wf-T-base,
assert_wf,
bnot_wf,
no_repeats_cons,
le_int_wf,
uiff_transitivity,
eqtt_to_assert,
assert_of_eq_int,
iff_transitivity,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
assert_of_lt_int,
assert_functionality_wrt_uiff,
bnot_of_lt_int,
assert_of_le_int,
sorted-cons,
l_all_iff,
subtype_rel_transitivity,
l_member_wf,
cons_member,
or_wf,
equal_functionality_wrt_subtype_rel2,
member-s-insert
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
because_Cache,
sqequalRule,
lambdaEquality,
cumulativity,
hypothesisEquality,
independent_isectElimination,
hypothesis,
independent_functionElimination,
lambdaFormation,
rename,
dependent_functionElimination,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
intEquality,
universeEquality,
baseClosed,
voidElimination,
voidEquality,
setElimination,
natural_numberEquality,
dependent_pairFormation,
int_eqEquality,
independent_pairFormation,
unionElimination,
computeAll,
dependent_set_memberEquality,
productElimination,
applyEquality,
equalityElimination,
impliesFunctionality,
setEquality,
promote_hyp,
addLevel
Latex:
\mforall{}[T:Type]
\mforall{}[x:T]. \mforall{}[L:T List]. (no\_repeats(T;s-insert(x;L))) supposing (no\_repeats(T;L) and sorted(L))
supposing T \msubseteq{}r \mBbbZ{}
Date html generated:
2017_04_17-AM-08_32_18
Last ObjectModification:
2017_02_27-PM-04_53_04
Theory : list_1
Home
Index