Nuprl Lemma : s-insert-no-repeats
∀[T:Type]. ∀[x:T]. ∀[L:T List].  (no_repeats(T;s-insert(x;L))) supposing (no_repeats(T;L) and sorted(L)) supposing T ⊆r \000Cℤ
Proof
Definitions occuring in Statement : 
s-insert: s-insert(x;l), 
no_repeats: no_repeats(T;l), 
sorted: sorted(L), 
list: T List, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
s-insert: s-insert(x;l), 
no_repeats: no_repeats(T;l), 
sorted: sorted(L), 
select: L[n], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
not: ¬A, 
false: False, 
nat: ℕ, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
label: ...$L... t
Lemmas referenced : 
list_induction, 
isect_wf, 
sorted_wf, 
no_repeats_wf, 
s-insert_wf, 
list_wf, 
no_repeats_witness, 
subtype_rel_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
decidable__equal_int, 
int_formula_prop_wf, 
le_wf, 
equal-wf-base, 
int_subtype_base, 
equal_wf, 
select_wf, 
cons_wf, 
nil_wf, 
not_wf, 
nat_wf, 
less_than_wf, 
uall_wf, 
all_wf, 
int_seg_wf, 
int_seg_properties, 
list_ind_cons_lemma, 
ifthenelse_wf, 
eq_int_wf, 
lt_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
no_repeats_cons, 
le_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
assert_of_lt_int, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
sorted-cons, 
l_all_iff, 
subtype_rel_transitivity, 
l_member_wf, 
cons_member, 
or_wf, 
equal_functionality_wrt_subtype_rel2, 
member-s-insert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
universeEquality, 
baseClosed, 
voidElimination, 
voidEquality, 
setElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
unionElimination, 
computeAll, 
dependent_set_memberEquality, 
productElimination, 
applyEquality, 
equalityElimination, 
impliesFunctionality, 
setEquality, 
promote_hyp, 
addLevel
Latex:
\mforall{}[T:Type]
    \mforall{}[x:T].  \mforall{}[L:T  List].    (no\_repeats(T;s-insert(x;L)))  supposing  (no\_repeats(T;L)  and  sorted(L)) 
    supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2017_04_17-AM-08_32_18
Last ObjectModification:
2017_02_27-PM-04_53_04
Theory : list_1
Home
Index