Nuprl Lemma : sorted-merge

[T:Type]. ∀[bs,as:T List].  sorted(merge(as;bs)) supposing sorted(as) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  merge: merge(as;bs) sorted: sorted(L) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q merge: merge(as;bs) all: x:A. B[x] top: Top sorted: sorted(L) le: A ≤ B and: P ∧ Q not: ¬A false: False int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] less_than: a < b squash: T subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_wf s-insert_wf s-insert-sorted reduce_cons_lemma int_seg_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf less_than'_wf reduce_nil_lemma merge_wf sorted_wf isect_wf list_wf uall_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality productElimination independent_pairEquality because_Cache cumulativity setElimination rename natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll imageElimination applyEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs,as:T  List].    sorted(merge(as;bs))  supposing  sorted(as)  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2016_05_15-PM-03_52_39
Last ObjectModification: 2016_01_16-AM-10_56_34

Theory : general


Home Index