Nuprl Lemma : s-insert-sorted
∀[T:Type]. ∀[x:T]. ∀[L:T List].  sorted(s-insert(x;L)) supposing sorted(L) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
s-insert: s-insert(x;l), 
sorted: sorted(L), 
list: T List, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
sorted: sorted(L), 
le: A ≤ B, 
and: P ∧ Q, 
int_seg: {i..j-}, 
s-insert: s-insert(x;l), 
select: L[n], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
uiff: uiff(P;Q), 
squash: ↓T, 
subtype_rel: A ⊆r B, 
not: ¬A, 
less_than': less_than'(a;b), 
true: True, 
false: False, 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
l_all: (∀x∈L.P[x]), 
or: P ∨ Q
Lemmas referenced : 
list_induction, 
isect_wf, 
sorted_wf, 
s-insert_wf, 
le_witness_for_triv, 
list_wf, 
subtype_rel_wf, 
int_seg_wf, 
length_wf, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
istype-void, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
sq_stable__le, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
istype-int, 
zero-add, 
add-swap, 
add-commutes, 
le-add-cancel2, 
le_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
list_ind_cons_lemma, 
ifthenelse_wf, 
eq_int_wf, 
cons_wf, 
lt_int_wf, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
equal_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
sorted-cons, 
le_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
assert_of_lt_int, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
l_all_cons, 
le_weakening2, 
l_all_iff, 
l_member_wf, 
member-s-insert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
cumulativity, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
Error :universeIsType, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
rename, 
Error :isectIsType, 
Error :inhabitedIsType, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
natural_numberEquality, 
setElimination, 
universeEquality, 
baseClosed, 
voidElimination, 
addEquality, 
imageMemberEquality, 
imageElimination, 
applyEquality, 
Error :functionIsType, 
Error :equalityIsType1, 
independent_pairFormation, 
unionElimination, 
equalityElimination, 
Error :setIsType, 
hyp_replacement, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
applyLambdaEquality, 
Error :unionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[L:T  List].    sorted(s-insert(x;L))  supposing  sorted(L)  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2019_06_20-PM-00_42_27
Last ObjectModification:
2018_10_02-AM-10_06_17
Theory : list_0
Home
Index