Nuprl Lemma : oob-getleft?_wf
∀[B,A:Type]. ∀[x:one_or_both(A;B)].  (oob-getleft?(x) ∈ bag(A))
Proof
Definitions occuring in Statement : 
oob-getleft?: oob-getleft?(x), 
one_or_both: one_or_both(A;B), 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
oob-getleft?: oob-getleft?(x), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
prop: ℙ, 
bfalse: ff
Lemmas referenced : 
oob-hasleft_wf, 
bool_wf, 
eqtt_to_assert, 
single-bag_wf, 
oob-getleft_wf, 
assert_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
empty-bag_wf, 
equal_wf, 
one_or_both_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[B,A:Type].  \mforall{}[x:one\_or\_both(A;B)].    (oob-getleft?(x)  \mmember{}  bag(A))
Date html generated:
2018_05_21-PM-08_59_20
Last ObjectModification:
2017_07_26-PM-06_22_44
Theory : general
Home
Index