Nuprl Lemma : ring-as-list_wf
∀[T:Type]. ∀[L:T List]. ∀[f:{i:T| (i ∈ L)}  ⟶ {i:T| (i ∈ L)} ].  (ring-as-list(T;L;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
ring-as-list: ring-as-list(T;L;f)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ring-as-list: ring-as-list(T;L;f)
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
inject_wf, 
l_member_wf, 
all_wf, 
exists_wf, 
nat_wf, 
equal_wf, 
fun_exp_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{i:T|  (i  \mmember{}  L)\}    {}\mrightarrow{}  \{i:T|  (i  \mmember{}  L)\}  ].    (ring-as-list(T;L;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-06_20_57
Last ObjectModification:
2015_12_27-PM-00_05_36
Theory : general
Home
Index