Nuprl Lemma : ring-as-list_wf

[T:Type]. ∀[L:T List]. ∀[f:{i:T| (i ∈ L)}  ⟶ {i:T| (i ∈ L)} ].  (ring-as-list(T;L;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  ring-as-list: ring-as-list(T;L;f) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ring-as-list: ring-as-list(T;L;f) prop: and: P ∧ Q so_lambda: λ2x.t[x] all: x:A. B[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  inject_wf l_member_wf all_wf exists_wf nat_wf equal_wf fun_exp_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality lambdaFormation setElimination rename dependent_set_memberEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{i:T|  (i  \mmember{}  L)\}    {}\mrightarrow{}  \{i:T|  (i  \mmember{}  L)\}  ].    (ring-as-list(T;L;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-06_20_57
Last ObjectModification: 2015_12_27-PM-00_05_36

Theory : general


Home Index