Nuprl Lemma : split-at-first-gap-ext

[T:Type]
  ∀f:T ⟶ ℤ. ∀L:T List.
    (∃XY:T List × (T List) [let X,Y XY 
                            in (L (X Y) ∈ (T List))
                               ∧ (∀i:ℕ||X|| 1. ((f X[i 1]) ((f X[i]) 1) ∈ ℤ))
                               ∧ ((¬↑null(L))
                                  ((¬↑null(X)) ∧ ¬((f hd(Y)) ((f last(X)) 1) ∈ ℤsupposing ||Y|| ≥ ))])


Proof




Definitions occuring in Statement :  last: last(L) select: L[n] hd: hd(l) length: ||as|| null: null(as) append: as bs list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] ge: i ≥  all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] subtract: m add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T split-at-first-gap split-at-first-rel list_induction nil: [] it: list-cases uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T colist-cases so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] colist-ext btrue: tt cons: [a b] bfalse: ff decidable__int_equal
Lemmas referenced :  split-at-first-gap lifting-strict-decide top_wf equal_wf has-value_wf_base base_wf is-exception_wf lifting-strict-spread lifting-strict-isaxiom lifting-strict-int_eq split-at-first-rel list_induction list-cases colist-cases colist-ext decidable__int_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation callbyvalueApply applyExceptionCases

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}L:T  List.
        (\mexists{}XY:T  List  \mtimes{}  (T  List)  [let  X,Y  =  XY 
                                                        in  (L  =  (X  @  Y))
                                                              \mwedge{}  (\mforall{}i:\mBbbN{}||X||  -  1.  ((f  X[i  +  1])  =  ((f  X[i])  +  1)))
                                                              \mwedge{}  ((\mneg{}\muparrow{}null(L))
                                                                  {}\mRightarrow{}  ((\mneg{}\muparrow{}null(X))
                                                                        \mwedge{}  \mneg{}((f  hd(Y))  =  ((f  last(X))  +  1))  supposing  ||Y||  \mgeq{}  1  ))])



Date html generated: 2018_05_21-PM-07_40_30
Last ObjectModification: 2017_07_26-PM-05_14_36

Theory : general


Home Index