Nuprl Lemma : ts-refinement-reachable

[ts1,ts2:transition-system{i:l}]. ∀[f:ts-type(ts2) ⟶ ts-type(ts1)].
  ∀[s:ts-reachable(ts2)]. (f s ∈ ts-reachable(ts1)) supposing ts-refinement(ts1;ts2;f)


Proof




Definitions occuring in Statement :  ts-refinement: ts-refinement(ts1;ts2;f) ts-reachable: ts-reachable(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  ts-reachable: ts-reachable(ts) member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x] infix_ap: y subtype_rel: A ⊆B uimplies: supposing a prop: ts-refinement: ts-refinement(ts1;ts2;f) and: P ∧ Q
Lemmas referenced :  rel_star_transitivity ts-type_wf ts-rel_wf ts-init_wf ts-refinement-reachable2 ts-init_wf_reachable rel_star_wf ts-reachable_wf subtype_rel_wf ts-refinement_wf transition-system_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setElimination thin rename cut dependent_set_memberEquality applyEquality hypothesisEquality lemma_by_obid isectElimination hypothesis because_Cache independent_functionElimination dependent_functionElimination sqequalRule lambdaEquality setEquality universeEquality cumulativity functionEquality isect_memberFormation introduction axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productElimination

Latex:
\mforall{}[ts1,ts2:transition-system\{i:l\}].  \mforall{}[f:ts-type(ts2)  {}\mrightarrow{}  ts-type(ts1)].
    \mforall{}[s:ts-reachable(ts2)].  (f  s  \mmember{}  ts-reachable(ts1))  supposing  ts-refinement(ts1;ts2;f)



Date html generated: 2016_05_15-PM-05_42_27
Last ObjectModification: 2015_12_27-PM-00_31_10

Theory : general


Home Index