Nuprl Lemma : ts-refinement-reachable
∀[ts1,ts2:transition-system{i:l}]. ∀[f:ts-type(ts2) ⟶ ts-type(ts1)].
  ∀[s:ts-reachable(ts2)]. (f s ∈ ts-reachable(ts1)) supposing ts-refinement(ts1;ts2;f)
Proof
Definitions occuring in Statement : 
ts-refinement: ts-refinement(ts1;ts2;f)
, 
ts-reachable: ts-reachable(ts)
, 
ts-type: ts-type(ts)
, 
transition-system: transition-system{i:l}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
ts-reachable: ts-reachable(ts)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
ts-refinement: ts-refinement(ts1;ts2;f)
, 
and: P ∧ Q
Lemmas referenced : 
rel_star_transitivity, 
ts-type_wf, 
ts-rel_wf, 
ts-init_wf, 
ts-refinement-reachable2, 
ts-init_wf_reachable, 
rel_star_wf, 
ts-reachable_wf, 
subtype_rel_wf, 
ts-refinement_wf, 
transition-system_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality, 
applyEquality, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
setEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
isect_memberFormation, 
introduction, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
productElimination
Latex:
\mforall{}[ts1,ts2:transition-system\{i:l\}].  \mforall{}[f:ts-type(ts2)  {}\mrightarrow{}  ts-type(ts1)].
    \mforall{}[s:ts-reachable(ts2)].  (f  s  \mmember{}  ts-reachable(ts1))  supposing  ts-refinement(ts1;ts2;f)
Date html generated:
2016_05_15-PM-05_42_27
Last ObjectModification:
2015_12_27-PM-00_31_10
Theory : general
Home
Index