Nuprl Lemma : unique-minimal-wellfounded-implies
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (decidable-non-minimal(T;x,y.R[x;y])
  
⇒ WellFnd{i}(T;x,y.R[x;y])
  
⇒ (∀m:T. (unique-minimal(T;x,y.R[x;y];m) 
⇒ (∀y:T. (↓m ((λx,y. R[x;y])^*) y)))))
Proof
Definitions occuring in Statement : 
decidable-non-minimal: decidable-non-minimal(T;x,y.R[x; y])
, 
unique-minimal: unique-minimal(T;x,y.R[x; y];m)
, 
rel_star: R^*
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
prop: ℙ
, 
guard: {T}
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
decidable-non-minimal: decidable-non-minimal(T;x,y.R[x; y])
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
unique-minimal: unique-minimal(T;x,y.R[x; y];m)
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
rel_star_weakening, 
rel_rel_star, 
rel_star_transitivity, 
decidable-non-minimal_wf, 
wellfounded_wf, 
unique-minimal_wf, 
all_wf, 
rel_star_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
functionEquality, 
dependent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
unionElimination, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
dependent_pairFormation, 
voidElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (decidable-non-minimal(T;x,y.R[x;y])
    {}\mRightarrow{}  WellFnd\{i\}(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}m:T.  (unique-minimal(T;x,y.R[x;y];m)  {}\mRightarrow{}  (\mforall{}y:T.  (\mdownarrow{}m  rel\_star(T;  \mlambda{}x,y.  R[x;y])  y)))))
Date html generated:
2016_05_15-PM-07_51_25
Last ObjectModification:
2016_01_16-AM-09_36_45
Theory : general
Home
Index