Nuprl Lemma : unique-minimal-wellfounded-implies

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (decidable-non-minimal(T;x,y.R[x;y])
   WellFnd{i}(T;x,y.R[x;y])
   (∀m:T. (unique-minimal(T;x,y.R[x;y];m)  (∀y:T. (↓((λx,y. R[x;y])^*) y)))))


Proof




Definitions occuring in Statement :  decidable-non-minimal: decidable-non-minimal(T;x,y.R[x; y]) unique-minimal: unique-minimal(T;x,y.R[x; y];m) rel_star: R^* wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] squash: T implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] wellfounded: WellFnd{i}(A;x,y.R[x; y]) so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s1;s2] so_apply: x[s] prop: guard: {T} squash: T so_lambda: λ2y.t[x; y] decidable-non-minimal: decidable-non-minimal(T;x,y.R[x; y]) decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] uimplies: supposing a unique-minimal: unique-minimal(T;x,y.R[x; y];m) and: P ∧ Q not: ¬A false: False
Lemmas referenced :  rel_star_weakening rel_rel_star rel_star_transitivity decidable-non-minimal_wf wellfounded_wf unique-minimal_wf all_wf rel_star_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution hypothesis isectElimination sqequalRule lambdaEquality lemma_by_obid applyEquality hypothesisEquality independent_functionElimination functionEquality dependent_functionElimination imageElimination imageMemberEquality baseClosed because_Cache cumulativity universeEquality isect_memberEquality unionElimination productElimination independent_isectElimination equalitySymmetry dependent_pairFormation voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (decidable-non-minimal(T;x,y.R[x;y])
    {}\mRightarrow{}  WellFnd\{i\}(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}m:T.  (unique-minimal(T;x,y.R[x;y];m)  {}\mRightarrow{}  (\mforall{}y:T.  (\mdownarrow{}m  rel\_star(T;  \mlambda{}x,y.  R[x;y])  y)))))



Date html generated: 2016_05_15-PM-07_51_25
Last ObjectModification: 2016_01_16-AM-09_36_45

Theory : general


Home Index