Nuprl Lemma : void-list-equality3

[x,y:Void List].  {(↑null(x)) ∧ (↑null(y))} supposing y ∈ (Void List)


Proof




Definitions occuring in Statement :  null: null(as) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] guard: {T} and: P ∧ Q void: Void equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: guard: {T} and: P ∧ Q subtype_rel: A ⊆B top: Top so_apply: x[s] implies:  Q assert: b ifthenelse: if then else fi  btrue: tt cand: c∧ B true: True all: x:A. B[x] bfalse: ff
Lemmas referenced :  list_induction uall_wf list_wf isect_wf equal_wf assert_wf null_wf3 subtype_rel_list top_wf equal-wf-base-T nil_wf null_nil_lemma equal-wf-base null_cons_lemma assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality voidEquality hypothesis hypothesisEquality productEquality applyEquality independent_isectElimination isect_memberEquality voidElimination independent_functionElimination baseClosed natural_numberEquality independent_pairFormation productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation rename dependent_functionElimination

Latex:
\mforall{}[x,y:Void  List].    \{(\muparrow{}null(x))  \mwedge{}  (\muparrow{}null(y))\}  supposing  x  =  y



Date html generated: 2018_05_21-PM-07_36_04
Last ObjectModification: 2017_07_26-PM-05_10_10

Theory : general


Home Index