Nuprl Lemma : void-list-equality3
∀[x,y:Void List].  {(↑null(x)) ∧ (↑null(y))} supposing x = y ∈ (Void List)
Proof
Definitions occuring in Statement : 
null: null(as)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
void: Void
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cand: A c∧ B
, 
true: True
, 
all: ∀x:A. B[x]
, 
bfalse: ff
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
equal_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
equal-wf-base-T, 
nil_wf, 
null_nil_lemma, 
equal-wf-base, 
null_cons_lemma, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
productEquality, 
applyEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
independent_functionElimination, 
baseClosed, 
natural_numberEquality, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
rename, 
dependent_functionElimination
Latex:
\mforall{}[x,y:Void  List].    \{(\muparrow{}null(x))  \mwedge{}  (\muparrow{}null(y))\}  supposing  x  =  y
Date html generated:
2018_05_21-PM-07_36_04
Last ObjectModification:
2017_07_26-PM-05_10_10
Theory : general
Home
Index