Nuprl Lemma : wellfounded-minimal-field

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (WellFnd{i}(T;x,y.R y)
   (∀x,y:T.  Dec(R y))
   (∀y:T. ∃L:T List. ∀x:T. ((R y)  (x ∈ L)))
   (∀y:T. ∃x:T. (((R^*) y) ∧ (∀z:T. (R x))))))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List rel_star: R^* wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T true: True exists: x:A. B[x] and: P ∧ Q cand: c∧ B not: ¬A false: False prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] infix_ap: y
Lemmas referenced :  wellfounded-minimal true_wf decidable__true rel_star_wf all_wf not_wf exists_wf list_wf l_member_wf decidable_wf wellfounded_wf rel-rel-plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality lambdaEquality hypothesis independent_functionElimination sqequalRule dependent_functionElimination natural_numberEquality productElimination dependent_pairFormation independent_pairFormation voidElimination applyEquality productEquality universeEquality functionEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(T;x,y.R  x  y)
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(R  x  y))
    {}\mRightarrow{}  (\mforall{}y:T.  \mexists{}L:T  List.  \mforall{}x:T.  ((R  x  y)  {}\mRightarrow{}  (x  \mmember{}  L)))
    {}\mRightarrow{}  (\mforall{}y:T.  \mexists{}x:T.  ((rel\_star(T;  R)  x  y)  \mwedge{}  (\mforall{}z:T.  (\mneg{}(R  z  x))))))



Date html generated: 2016_05_15-PM-04_52_29
Last ObjectModification: 2015_12_27-PM-02_32_42

Theory : general


Home Index