Nuprl Lemma : decidable__equal-free-dist-lattice-point
∀[T:Type]. ∀eq:EqDecider(T). ∀a,b:Point(free-dist-lattice(T; eq)).  Dec(a = b ∈ Point(free-dist-lattice(T; eq)))
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
free-dl-point, 
decidable__equal_set, 
fset_wf, 
decidable__equal_fset, 
decidable-equal-deq, 
assert_wf, 
fset-antichain_wf, 
set_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}a,b:Point(free-dist-lattice(T;  eq)).    Dec(a  =  b)
Date html generated:
2020_05_20-AM-08_46_58
Last ObjectModification:
2015_12_28-PM-01_59_12
Theory : lattices
Home
Index