Nuprl Lemma : decidable__equal-free-dist-lattice-point

[T:Type]. ∀eq:EqDecider(T). ∀a,b:Point(free-dist-lattice(T; eq)).  Dec(a b ∈ Point(free-dist-lattice(T; eq)))


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) lattice-point: Point(l) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  free-dl-point decidable__equal_set fset_wf decidable__equal_fset decidable-equal-deq assert_wf fset-antichain_wf set_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache isect_memberFormation lambdaFormation hypothesisEquality independent_functionElimination dependent_functionElimination lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}a,b:Point(free-dist-lattice(T;  eq)).    Dec(a  =  b)



Date html generated: 2020_05_20-AM-08_46_58
Last ObjectModification: 2015_12_28-PM-01_59_12

Theory : lattices


Home Index