Nuprl Lemma : mk-distributive-lattice_wf
∀[T:Type]. ∀[m,j:T ⟶ T ⟶ T].
  mk-distributive-lattice(T; m; j) ∈ DistributiveLattice 
  supposing (∀[a,b:T].  (m[a;b] = m[b;a] ∈ T))
  ∧ (∀[a,b:T].  (j[a;b] = j[b;a] ∈ T))
  ∧ (∀[a,b,c:T].  (m[a;m[b;c]] = m[m[a;b];c] ∈ T))
  ∧ (∀[a,b,c:T].  (j[a;j[b;c]] = j[j[a;b];c] ∈ T))
  ∧ (∀[a,b:T].  (j[a;m[a;b]] = a ∈ T))
  ∧ (∀[a,b:T].  (m[a;j[a;b]] = a ∈ T))
  ∧ (∀[a,b,c:T].  (m[a;j[b;c]] = j[m[a;b];m[a;c]] ∈ T))
Proof
Definitions occuring in Statement : 
mk-distributive-lattice: mk-distributive-lattice(T; m; j)
, 
distributive-lattice: DistributiveLattice
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
mk-distributive-lattice: mk-distributive-lattice(T; m; j)
, 
distributive-lattice: DistributiveLattice
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
mk-lattice: mk-lattice(T;m;j)
, 
lattice-axioms: lattice-axioms(l)
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
so_apply: x[s1;s2]
, 
record-select: r.x
, 
record-update: r[x := v]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
mk-lattice_wf, 
rec_select_update_lemma, 
subtype_rel_self, 
lattice-point_wf, 
and_wf, 
lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_set_memberEquality, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
applyEquality, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
cumulativity, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[m,j:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].
    mk-distributive-lattice(T;  m;  j)  \mmember{}  DistributiveLattice 
    supposing  (\mforall{}[a,b:T].    (m[a;b]  =  m[b;a]))
    \mwedge{}  (\mforall{}[a,b:T].    (j[a;b]  =  j[b;a]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (m[a;m[b;c]]  =  m[m[a;b];c]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (j[a;j[b;c]]  =  j[j[a;b];c]))
    \mwedge{}  (\mforall{}[a,b:T].    (j[a;m[a;b]]  =  a))
    \mwedge{}  (\mforall{}[a,b:T].    (m[a;j[a;b]]  =  a))
    \mwedge{}  (\mforall{}[a,b,c:T].    (m[a;j[b;c]]  =  j[m[a;b];m[a;c]]))
Date html generated:
2020_05_20-AM-08_25_02
Last ObjectModification:
2015_12_28-PM-02_03_53
Theory : lattices
Home
Index