Nuprl Lemma : mk-lattice_wf

[T:Type]. ∀[m,j:T ⟶ T ⟶ T].
  mk-lattice(T;m;j) ∈ Lattice 
  supposing (∀[a,b:T].  (m[a;b] m[b;a] ∈ T))
  ∧ (∀[a,b:T].  (j[a;b] j[b;a] ∈ T))
  ∧ (∀[a,b,c:T].  (m[a;m[b;c]] m[m[a;b];c] ∈ T))
  ∧ (∀[a,b,c:T].  (j[a;j[b;c]] j[j[a;b];c] ∈ T))
  ∧ (∀[a,b:T].  (j[a;m[a;b]] a ∈ T))
  ∧ (∀[a,b:T].  (m[a;j[a;b]] a ∈ T))


Proof




Definitions occuring in Statement :  mk-lattice: mk-lattice(T;m;j) lattice: Lattice uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q mk-lattice: mk-lattice(T;m;j) lattice: Lattice prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] lattice-structure: LatticeStructure record+: record+ record-update: r[x := v] record: record(x.T[x]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q lattice-axioms: lattice-axioms(l) lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) cand: c∧ B
Lemmas referenced :  uall_wf equal_wf lattice-axioms_wf eq_atom_wf uiff_transitivity equal-wf-base bool_wf assert_wf atom_subtype_base eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry productEquality extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality because_Cache applyEquality functionExtensionality isect_memberEquality functionEquality universeEquality dependent_set_memberEquality dependentIntersection_memberEquality tokenEquality lambdaFormation unionElimination equalityElimination baseApply closedConclusion baseClosed atomEquality independent_functionElimination independent_isectElimination instantiate dependent_functionElimination voidElimination voidEquality independent_pairFormation impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[m,j:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].
    mk-lattice(T;m;j)  \mmember{}  Lattice 
    supposing  (\mforall{}[a,b:T].    (m[a;b]  =  m[b;a]))
    \mwedge{}  (\mforall{}[a,b:T].    (j[a;b]  =  j[b;a]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (m[a;m[b;c]]  =  m[m[a;b];c]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (j[a;j[b;c]]  =  j[j[a;b];c]))
    \mwedge{}  (\mforall{}[a,b:T].    (j[a;m[a;b]]  =  a))
    \mwedge{}  (\mforall{}[a,b:T].    (m[a;j[a;b]]  =  a))



Date html generated: 2020_05_20-AM-08_23_56
Last ObjectModification: 2017_07_28-AM-09_12_34

Theory : lattices


Home Index