Nuprl Lemma : order-preserving-map-lattice-lemma

[l1,l2:Lattice]. ∀[f:Point(l1) ⟶ Point(l2)].
  (∀a,b:Point(l1).  a ∧ b ≤ a ∧ b) ∧ (∀a,b:Point(l1).  a ∨ b ≤ a ∨ b) 
  supposing ∀x,y:Point(l1).  (x ≤  x ≤ y)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B all: x:A. B[x] lattice: Lattice lattice-le: a ≤ b prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) guard: {T} least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
Lemmas referenced :  lattice-point_wf all_wf lattice-le_wf lattice_wf lattice-meet-is-glb lattice-meet_wf lattice-join-is-lub lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_pairFormation because_Cache sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality functionEquality applyEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[l1,l2:Lattice].  \mforall{}[f:Point(l1)  {}\mrightarrow{}  Point(l2)].
    (\mforall{}a,b:Point(l1).    f  a  \mwedge{}  b  \mleq{}  f  a  \mwedge{}  f  b)  \mwedge{}  (\mforall{}a,b:Point(l1).    f  a  \mvee{}  f  b  \mleq{}  f  a  \mvee{}  b) 
    supposing  \mforall{}x,y:Point(l1).    (x  \mleq{}  y  {}\mRightarrow{}  f  x  \mleq{}  f  y)



Date html generated: 2020_05_20-AM-08_26_19
Last ObjectModification: 2015_12_28-PM-02_01_55

Theory : lattices


Home Index