Nuprl Lemma : order-preserving-map-lattice-lemma
∀[l1,l2:Lattice]. ∀[f:Point(l1) ⟶ Point(l2)].
  (∀a,b:Point(l1).  f a ∧ b ≤ f a ∧ f b) ∧ (∀a,b:Point(l1).  f a ∨ f b ≤ f a ∨ b) 
  supposing ∀x,y:Point(l1).  (x ≤ y 
⇒ f x ≤ f y)
Proof
Definitions occuring in Statement : 
lattice-le: a ≤ b
, 
lattice: Lattice
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
lattice: Lattice
, 
lattice-le: a ≤ b
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
guard: {T}
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
Lemmas referenced : 
lattice-point_wf, 
all_wf, 
lattice-le_wf, 
lattice_wf, 
lattice-meet-is-glb, 
lattice-meet_wf, 
lattice-join-is-lub, 
lattice-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
functionEquality, 
applyEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[l1,l2:Lattice].  \mforall{}[f:Point(l1)  {}\mrightarrow{}  Point(l2)].
    (\mforall{}a,b:Point(l1).    f  a  \mwedge{}  b  \mleq{}  f  a  \mwedge{}  f  b)  \mwedge{}  (\mforall{}a,b:Point(l1).    f  a  \mvee{}  f  b  \mleq{}  f  a  \mvee{}  b) 
    supposing  \mforall{}x,y:Point(l1).    (x  \mleq{}  y  {}\mRightarrow{}  f  x  \mleq{}  f  y)
Date html generated:
2020_05_20-AM-08_26_19
Last ObjectModification:
2015_12_28-PM-02_01_55
Theory : lattices
Home
Index