Nuprl Lemma : causal_order_sigma
∀[T,A:Type].
  ∀L:T List
    ∀[R:ℕ||L|| ⟶ ℕ||L|| ⟶ ℙ]. ∀[P,Q:A ⟶ ℕ||L|| ⟶ ℙ].
      (Trans(ℕ||L||)(R _1 _2)
      
⇒ (∀x:A. causal_order(L;R;λi.P[x;i];λi.Q[x;i]))
      
⇒ causal_order(L;R;λi.∃x:A. P[x;i];λi.∃x:A. Q[x;i]))
Proof
Definitions occuring in Statement : 
causal_order: causal_order(L;R;P;Q)
, 
length: ||as||
, 
list: T List
, 
trans: Trans(T;x,y.E[x; y])
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
causal_order: causal_order(L;R;P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
cand: A c∧ B
Lemmas referenced : 
exists_wf, 
int_seg_wf, 
length_wf, 
all_wf, 
le_wf, 
subtype_rel_self, 
trans_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
natural_numberEquality, 
functionEquality, 
productEquality, 
setElimination, 
rename, 
instantiate, 
universeEquality, 
because_Cache, 
inhabitedIsType, 
functionIsType, 
universeIsType, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
independent_pairFormation
Latex:
\mforall{}[T,A:Type].
    \mforall{}L:T  List
        \mforall{}[R:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P,Q:A  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].
            (Trans(\mBbbN{}||L||)(R  $_{1}$  $_{2}$)
            {}\mRightarrow{}  (\mforall{}x:A.  causal\_order(L;R;\mlambda{}i.P[x;i];\mlambda{}i.Q[x;i]))
            {}\mRightarrow{}  causal\_order(L;R;\mlambda{}i.\mexists{}x:A.  P[x;i];\mlambda{}i.\mexists{}x:A.  Q[x;i]))
Date html generated:
2019_10_15-AM-10_57_41
Last ObjectModification:
2018_09_27-AM-09_52_36
Theory : list!
Home
Index