Nuprl Lemma : reverse_select_wf

[T:Type]. ∀[l:T List]. ∀[n:ℕ].  reverse_select(l;n) ∈ supposing n < ||l||


Proof




Definitions occuring in Statement :  reverse_select: reverse_select(l;n) length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  reverse_select: reverse_select(l;n) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  list_wf nat_wf less_than_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermAdd_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties length_wf subtract_wf select_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis addEquality setElimination rename natural_numberEquality independent_isectElimination dependent_functionElimination unionElimination imageElimination productElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[n:\mBbbN{}].    reverse\_select(l;n)  \mmember{}  T  supposing  n  <  ||l||



Date html generated: 2016_05_15-PM-01_53_39
Last ObjectModification: 2016_01_15-PM-11_32_59

Theory : list!


Home Index