Nuprl Lemma : det-mul-col

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[i:ℕn]. ∀[k:|r|].  (|matrix-mul-col(r;k;i;M)| (k |M|) ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-det: |M| matrix-mul-col: matrix-mul-col(r;k;i;M) matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uall: [x:A]. B[x] infix_ap: y natural_number: $n equal: t ∈ T crng: CRng rng_times: * rng_car: |r|
Definitions unfolded in proof :  true: True top: Top nat: rng: Rng crng: CRng member: t ∈ T uall: [x:A]. B[x] squash: T prop: subtype_rel: A ⊆B infix_ap: y uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  matrix-det_wf rng_times_wf infix_ap_wf matrix-transpose_wf matrix-mul-row_wf crng_wf nat_wf matrix_wf int_seg_wf rng_car_wf mul-col-is-transpose-mul-row equal_wf squash_wf true_wf det-transpose det-mul-row iff_weakening_equal
Rules used in proof :  voidEquality voidElimination natural_numberEquality because_Cache axiomEquality isect_memberEquality sqequalRule hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[i:\mBbbN{}n].  \mforall{}[k:|r|].    (|matrix-mul-col(r;k;i;M)|  =  (k  *  |M|))



Date html generated: 2018_05_21-PM-09_36_31
Last ObjectModification: 2017_12_11-PM-04_46_39

Theory : matrices


Home Index