Nuprl Lemma : non-zero-component-exists
∀r:RngSig
  ((∀x,y:|r|.  Dec(x = y ∈ |r|)) 
⇒ (∀k:ℕ. {∀a:ℕk ⟶ |r|. ((¬(a = 0 ∈ (ℕk ⟶ |r|))) 
⇒ (∃i:ℕk. (¬((a i) = 0 ∈ |r|))))}))
Proof
Definitions occuring in Statement : 
zero-vector: 0
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
rng_zero: 0
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
non-zero-component_wf, 
not_wf, 
equal_wf, 
int_seg_wf, 
rng_car_wf, 
zero-vector_wf, 
set_wf, 
rng_zero_wf, 
lelt_wf, 
nat_wf, 
all_wf, 
decidable_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
rename, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
hypothesis, 
functionEquality, 
natural_numberEquality, 
setElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}r:RngSig
    ((\mforall{}x,y:|r|.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \{\mforall{}a:\mBbbN{}k  {}\mrightarrow{}  |r|.  ((\mneg{}(a  =  0))  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}k.  (\mneg{}((a  i)  =  0))))\}))
Date html generated:
2018_05_21-PM-09_42_41
Last ObjectModification:
2018_05_19-PM-04_34_26
Theory : matrices
Home
Index