Nuprl Lemma : non-zero-component-exists
∀r:RngSig
((∀x,y:|r|. Dec(x = y ∈ |r|))
⇒ (∀k:ℕ. {∀a:ℕk ⟶ |r|. ((¬(a = 0 ∈ (ℕk ⟶ |r|)))
⇒ (∃i:ℕk. (¬((a i) = 0 ∈ |r|))))}))
Proof
Definitions occuring in Statement :
zero-vector: 0
,
int_seg: {i..j-}
,
nat: ℕ
,
decidable: Dec(P)
,
guard: {T}
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
equal: s = t ∈ T
,
rng_zero: 0
,
rng_car: |r|
,
rng_sig: RngSig
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
not: ¬A
,
false: False
Lemmas referenced :
non-zero-component_wf,
not_wf,
equal_wf,
int_seg_wf,
rng_car_wf,
zero-vector_wf,
set_wf,
rng_zero_wf,
lelt_wf,
nat_wf,
all_wf,
decidable_wf,
rng_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
rename,
dependent_pairFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_set_memberEquality,
hypothesis,
functionEquality,
natural_numberEquality,
setElimination,
because_Cache,
sqequalRule,
lambdaEquality,
applyEquality,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
voidElimination
Latex:
\mforall{}r:RngSig
((\mforall{}x,y:|r|. Dec(x = y)) {}\mRightarrow{} (\mforall{}k:\mBbbN{}. \{\mforall{}a:\mBbbN{}k {}\mrightarrow{} |r|. ((\mneg{}(a = 0)) {}\mRightarrow{} (\mexists{}i:\mBbbN{}k. (\mneg{}((a i) = 0))))\}))
Date html generated:
2018_05_21-PM-09_42_41
Last ObjectModification:
2018_05_19-PM-04_34_26
Theory : matrices
Home
Index