Nuprl Lemma : non-zero-component-exists

r:RngSig
  ((∀x,y:|r|.  Dec(x y ∈ |r|))  (∀k:ℕ{∀a:ℕk ⟶ |r|. ((¬(a 0 ∈ (ℕk ⟶ |r|)))  (∃i:ℕk. ((a i) 0 ∈ |r|))))}))


Proof




Definitions occuring in Statement :  zero-vector: 0 int_seg: {i..j-} nat: decidable: Dec(P) guard: {T} all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng_zero: 0 rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q not: ¬A false: False
Lemmas referenced :  non-zero-component_wf not_wf equal_wf int_seg_wf rng_car_wf zero-vector_wf set_wf rng_zero_wf lelt_wf nat_wf all_wf decidable_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation rename dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality hypothesis functionEquality natural_numberEquality setElimination because_Cache sqequalRule lambdaEquality applyEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination voidElimination

Latex:
\mforall{}r:RngSig
    ((\mforall{}x,y:|r|.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \{\mforall{}a:\mBbbN{}k  {}\mrightarrow{}  |r|.  ((\mneg{}(a  =  0))  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}k.  (\mneg{}((a  i)  =  0))))\}))



Date html generated: 2018_05_21-PM-09_42_41
Last ObjectModification: 2018_05_19-PM-04_34_26

Theory : matrices


Home Index