Nuprl Lemma : provision-equality

āˆ€[T:š•Œ']. āˆ€[ok1,ok2:ā„™]. āˆ€[v1:ā‹‚:ā†“ok1. T]. āˆ€[v2:ā‹‚:ā†“ok2. T].
  (provision(ok1; v1) provision(ok2; v2) āˆˆ Provisional(T)) supposing (((ā†“ok1) ā‡’ (v1 v2 āˆˆ T)) and (ā†“ok1 ā‡ā‡’ ā†“ok2))


Proof




Definitions occuring in Statement :  provision: provision(ok; v) provisional-type: Provisional(T) uimplies: supposing a uall: āˆ€[x:A]. B[x] prop: ā„™ iff: ā‡ā‡’ Q squash: ā†“T implies: ā‡’ Q isect: ā‹‚x:A. B[x] universe: Type equal: t āˆˆ T
Definitions unfolded in proof :  uall: āˆ€[x:A]. B[x] member: t āˆˆ T uimplies: supposing a iff: ā‡ā‡’ Q and: P āˆ§ Q provisional-type: Provisional(T) prop: ā„™ so_lambda: Ī»2y.t[x; y] so_lambda: Ī»2x.t[x] so_apply: x[s] rev_implies: ā‡ Q implies: ā‡’ Q subtype_rel: A āŠ†B so_apply: x[s1;s2] all: āˆ€x:A. B[x] provision: provision(ok; v) pi1: fst(t) pi2: snd(t) cand: cāˆ§ B squash: ā†“T exists: āˆƒx:A. B[x]
Lemmas referenced :  quotient-member-eq squash_wf iff_wf pi1_wf equal_wf pi2_wf uimplies_subtype provisional-equiv isect_subtype_rel_trivial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin instantiate extract_by_obid isectElimination productEquality universeEquality sqequalRule isectEquality cumulativity hypothesisEquality hypothesis lambdaEquality_alt inhabitedIsType functionEquality applyEquality independent_functionElimination because_Cache independent_isectElimination universeIsType productIsType isectIsType dependent_functionElimination dependent_pairEquality_alt isect_memberEquality_alt rename equalityTransitivity equalitySymmetry independent_pairFormation lambdaFormation_alt imageElimination imageMemberEquality baseClosed functionIsType equalityIstype axiomEquality isectIsTypeImplies

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[ok1,ok2:\mBbbP{}].  \mforall{}[v1:\mcap{}:\mdownarrow{}ok1.  T].  \mforall{}[v2:\mcap{}:\mdownarrow{}ok2.  T].
    (provision(ok1;  v1)  =  provision(ok2;  v2))  supposing  (((\mdownarrow{}ok1)  {}\mRightarrow{}  (v1  =  v2))  and  (\mdownarrow{}ok1  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}ok2))



Date html generated: 2020_05_20-AM-08_00_47
Last ObjectModification: 2020_05_17-PM-06_52_38

Theory : monads


Home Index