Nuprl Lemma : simple-swap-test_wf
∀[n:ℕ]. ∀[AType:array{i:l}(ℤ;n)].
  let AModel = array-model(AType) in
      ∀[prog:A-map Unit]. ∀[i,j:ℕn].  (simple-swap-test(AModel;prog;i;j) ∈ A-map 𝔹)
Proof
Definitions occuring in Statement : 
simple-swap-test: simple-swap-test(AModel;prog;i;j)
, 
A-map: A-map
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
let: let, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
nat: ℕ
, 
simple-swap-test: simple-swap-test(AModel;prog;i;j)
, 
member: t ∈ T
, 
let: let, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
A-fetch'_wf, 
A-coerce_wf, 
A-bind_wf, 
A-return_wf, 
bool_wf, 
band_wf, 
eq_int_wf, 
int_seg_wf, 
A-map_wf, 
unit_wf2, 
array_wf, 
nat_wf
Rules used in proof : 
intEquality, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
sqequalRule, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
lambdaEquality_alt, 
inhabitedIsType, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
isectEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(\mBbbZ{};n)].
    let  AModel  =  array-model(AType)  in
            \mforall{}[prog:A-map  Unit].  \mforall{}[i,j:\mBbbN{}n].    (simple-swap-test(AModel;prog;i;j)  \mmember{}  A-map  \mBbbB{})
Date html generated:
2020_05_20-AM-08_00_21
Last ObjectModification:
2020_01_17-AM-07_45_34
Theory : monads
Home
Index