Nuprl Lemma : fps-pascal-symmetry
∀[r:CRng]. ∀[x,y:Atom].  (Δ(x,y) = Δ(y,x) ∈ PowerSeries(r))
Proof
Definitions occuring in Statement : 
fps-pascal: Δ(x,y)
, 
power-series: PowerSeries(X;r)
, 
uall: ∀[x:A]. B[x]
, 
atom: Atom
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fps-pascal: Δ(x,y)
, 
squash: ↓T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
all: ∀x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
fps-div_wf, 
squash_wf, 
valueall-type_wf, 
power-series_wf, 
rng_car_wf, 
crng_wf, 
deq_wf, 
atom-deq_wf, 
rng_one_wf, 
fps-one_wf, 
equal_wf, 
true_wf, 
fps-sub_wf, 
fps-add-comm, 
fps-single_wf, 
single-bag_wf, 
fps-add_wf, 
iff_weakening_equal, 
atom-valueall-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
setElimination, 
rename, 
universeEquality, 
because_Cache, 
atomEquality, 
dependent_functionElimination, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].    (\mDelta{}(x,y)  =  \mDelta{}(y,x))
Date html generated:
2018_05_21-PM-10_12_03
Last ObjectModification:
2017_07_26-PM-06_34_54
Theory : power!series
Home
Index