Nuprl Lemma : rv-le_witness
∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].  (X ≤ Y 
⇒ (λs.Ax ∈ X ≤ Y))
Proof
Definitions occuring in Statement : 
rv-le: X ≤ Y
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
axiom: Ax
Definitions unfolded in proof : 
rv-le: X ≤ Y
, 
random-variable: RandomVariable(p;n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
finite-prob-space: FinProbSpace
, 
and: P ∧ Q
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
p-outcome: Outcome
, 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
p-outcome_wf, 
all_wf, 
qle_wf, 
length_wf, 
rationals_wf, 
nat_wf, 
finite-prob-space_wf, 
qle_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
hypothesis, 
functionEquality, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].    (X  \mleq{}  Y  {}\mRightarrow{}  (\mlambda{}s.Ax  \mmember{}  X  \mleq{}  Y))
Date html generated:
2016_05_15-PM-11_48_21
Last ObjectModification:
2015_12_28-PM-07_15_06
Theory : randomness
Home
Index