Nuprl Lemma : rv-le_witness

[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].  (X ≤  s.Ax ∈ X ≤ Y))


Proof




Definitions occuring in Statement :  rv-le: X ≤ Y random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace nat: uall: [x:A]. B[x] implies:  Q member: t ∈ T lambda: λx.A[x] axiom: Ax
Definitions unfolded in proof :  rv-le: X ≤ Y random-variable: RandomVariable(p;n) uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] finite-prob-space: FinProbSpace and: P ∧ Q nat: prop: so_lambda: λ2x.t[x] p-outcome: Outcome so_apply: x[s]
Lemmas referenced :  int_seg_wf p-outcome_wf all_wf qle_wf length_wf rationals_wf nat_wf finite-prob-space_wf qle_witness
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation lambdaEquality sqequalHypSubstitution setElimination thin rename productElimination hypothesis functionEquality lemma_by_obid isectElimination natural_numberEquality hypothesisEquality applyEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache independent_functionElimination

Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].    (X  \mleq{}  Y  {}\mRightarrow{}  (\mlambda{}s.Ax  \mmember{}  X  \mleq{}  Y))



Date html generated: 2016_05_15-PM-11_48_21
Last ObjectModification: 2015_12_28-PM-07_15_06

Theory : randomness


Home Index