Nuprl Lemma : assert-inhabited-rat-interval
∀[I:ℚInterval]. uiff(↑Inhabited(I);(fst(I)) ≤ (snd(I)))
Proof
Definitions occuring in Statement : 
inhabited-rat-interval: Inhabited(I)
, 
rational-interval: ℚInterval
, 
qle: r ≤ s
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
Definitions unfolded in proof : 
top: Top
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
inhabited-rat-interval: Inhabited(I)
, 
rational-interval: ℚInterval
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rational-interval_wf, 
inhabited-rat-interval_wf, 
istype-void, 
rationals_wf, 
pi1_wf_top, 
assert_witness, 
q_le_wf, 
istype-assert, 
iff_weakening_equal, 
assert-q_le-eq, 
qle_wf, 
qle_witness
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
voidElimination, 
isect_memberEquality_alt, 
independent_pairEquality, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
because_Cache, 
universeIsType, 
independent_functionElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:\mBbbQ{}Interval].  uiff(\muparrow{}Inhabited(I);(fst(I))  \mleq{}  (snd(I)))
Date html generated:
2019_10_29-AM-07_47_37
Last ObjectModification:
2019_10_17-PM-04_33_46
Theory : rationals
Home
Index