Nuprl Lemma : int-eq-in-rationals

[x,y:ℤ].  uiff(x y ∈ ℚ;x y ∈ ℤ)


Proof




Definitions occuring in Statement :  rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B guard: {T} implies:  Q qeq: qeq(r;s) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  equal_wf rationals_wf int-subtype-rationals equal_functionality_wrt_subtype_rel2 assert-qeq valueall-type-has-valueall int-valueall-type evalall-reduce assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule because_Cache intEquality independent_isectElimination independent_functionElimination productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry callbyvalueReduce isintReduceTrue

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  =  y;x  =  y)



Date html generated: 2016_05_15-PM-10_39_14
Last ObjectModification: 2015_12_27-PM-07_59_21

Theory : rationals


Home Index